描述


小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了不同的数字,并且这些数字都是处于1..N的范围之内,每根木棍都连接着两个不同的小球,并且保证任意两个小球间都不存在两条不同的路径可以互相到达。没错,这次说的还是这棵树玩具的故事!

小Ho的树玩具的质量似乎不是很好,短短玩了几个星期,便掉漆了!

“简直是一场噩梦!”小Ho拿着树玩具眼含热泪道。

“这有什么好忧伤的,自己买点油漆刷一刷不就行了?”小Hi表示不能理解。

“还可以这样?”小Ho顿时兴高采烈了起来,立马跑出去买回来了油漆,但是小Ho身上的钱却不够——于是他只买回了有限的油漆,这些油漆最多能给M个结点涂上颜色,这就意味着小Ho不能够将他心爱的树玩具中的每一个结点都涂上油漆!

小Ho低头思索了半天——他既不想只选一部分结点补漆,也不想找小Hi借钱,但是很快,他想出了一个非常棒的主意:将包含1号结点的一部分连通的结点进行涂漆(这里的连通指的是这一些涂漆的结点可以互相到达并且不会经过没有涂漆的结点),然后将剩下的结点拆掉!

那么究竟选择哪些结点进行涂漆呢?小Ho想了想给每个结点都评上了分——他希望最后留下来,也就是涂漆了的那些结点的评分之和可以尽可能的高!

那么,小Ho该如何做呢?

输入


每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为两个整数N、M,意义如前文所述。

每组测试数据的第二行为N个整数,其中第i个整数Vi表示标号为i的结点的评分

每组测试数据的第3~N+1行,每行分别描述一根木棍,其中第i+1行为两个整数Ai,Bi,表示第i根木棍连接的两个小球的编号。

对于100%的数据,满足N<=10^2,1<=Ai<=N, 1<=Bi<=N, 1<=Vi<=10^3, 1<=M<=N

输出

第1行:1个实数d,保留3位小数(四舍五入)对于每组测试数据,输出一个整数Ans,表示使得涂漆结点的评分之和最高可能是多少。

样例输入

10 4
370 328 750 930 604 732 159 167 945 210
1 2
2 3
1 4
1 5
4 6
4 7
4 8
6 9
5 10

样例输出

2977

题解

设f[rt][j]表示以节点rt为根的子树在油漆使用j个的情况下所能得到的最大分数,那么它的每个子节点获取分数及其所需都可以看成一个物品,类01背包

For i=each child of rt
For j=m .. 2
For k=1 .. j-1
f[rt][j]=max(f[rt][j],f[rt][j-k]+f[i][k])
#include <bits/stdc++.h>
#define ll long long
#define inf 1000000000
#define PI acos(-1)
#define bug puts("here")
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,n,x) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
inline int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int N=205;
ll f[N][N];
struct node{
int to,nxt;
}Path[N<<1];
int tot=0,head[N],n,m;
void Addedge(int u,int v){
Path[++tot]=node{v,head[u]};
head[u]=tot;
}
void dfs(int cur,int fa){
for(int i=head[cur];i;i=Path[i].nxt){
if(Path[i].to==fa) continue;
dfs(Path[i].to,cur);
DEP(j,m,2){
REP(k,1,j-1){
f[cur][j]=max(f[cur][j],f[cur][j-k]+f[Path[i].to][k]);
}
}
}
}
int main(){
// while(1)
{
n=read();m=read();
REP(i,1,n) f[i][1]=read();
mem(head,0);tot=0;
REP(i,1,n-1){
int u=read(),v=read();
Addedge(u,v);
Addedge(v,u);
}
dfs(1,0);
printf("%lld\n",f[1][m]);
}
return 0;
}

【HIHOCODER 1055】 刷油漆(树上背包)的更多相关文章

  1. hihoCoder #1055 : 刷油漆 [ 树形dp ]

    传送门 结果:Accepted     提交时间:2015-05-11 10:36:08 #1055 : 刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到 ...

  2. HihoCoder 1055 刷油漆 (树上背包)

    题目:https://vjudge.net/contest/323605#problem/A 题意:一棵树,让你选择m个点的一个连通块,使得得到的权值最大 思路:树上背包,我们用一个dp数组,dp[i ...

  3. HihoCoder 1055 : 刷油漆 树形DP第一题(对象 点)

    刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了 ...

  4. hihoCoder#1055 : 刷油漆 (树形DP+01背包)

    题目大意:给一棵带点权的树,现在要从根节点开始选出m个连通的节点,使总权值最大. 题目分析:定义状态dp(u,m)表示在以u为根的子树从根节点开始选出m个点连通的最大总权值,则dp(u,m)=max( ...

  5. [hihoCoder] #1055 : 刷油漆

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了不同的数 ...

  6. hihoCoder hiho一下 第十二周 #1055 : 刷油漆 (树上DP)

    思路: 只能刷部分节点数m,总节点数n.如果m>=n那么就可以全刷了,那就不用任何算法了.如果m<n那么就要有取舍了.用DP思路,记录下每个节点如果获得到1~m个选择所能获得的最大权值.这 ...

  7. hiho #1055 : 刷油漆

    上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了不同的数字,并且这些数字都是处于1..N的范围之内,每根木棍都连接着两个不同的小球,并 ...

  8. hiho 1055 刷油漆 树形dp

    一个简单的树上的背包问题. 代码: #include <iostream> #include <cstdio> #include <cstring> #includ ...

  9. hihoCoder week12 刷油漆

    题目链接: https://hihocoder.com/contest/hiho12/problem/1 给出一棵树 每个节点的价值 求以1为根的树中,选取m个相联通的节点的最大价值和 #includ ...

  10. HihoCoder第十二周:刷油漆

    #1055 : 刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球 ...

随机推荐

  1. NET Core 2.0使用Cookie认证实现SSO单点登录

    NET Core 2.0使用Cookie认证实现SSO单点登录 之前写了一个使用ASP.NET MVC实现SSO登录的Demo,https://github.com/bidianqing/SSO.Sa ...

  2. Ubuntu 下修改Tomcat和Jetty默认的JDK和初始内存

    修改/etc/default/tomcat  或者  /etc/default/jetty   文件 中的 JAVA_HOME 和 JAVA_OPTS

  3. Spark Mllib里如何程序输出数据集的条数(图文详解)

    不多说,直接上干货! 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第17章 决策树多元分类UCI Covertype数据集

  4. 渣渣菜鸡的 ElasticSearch 源码解析 —— 启动流程(下)

    关注我 转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/08/12/es-code03/ 前提 上篇文章写完了 ES 流程启动的一部分,main 方法都入 ...

  5. JS filter使用

    filter 用于筛选数组中符合条件的所以元素,filter只能接受函数 注意:filter只返回筛选结果,不会对原来数组改变 实现方法: <html lang="en"&g ...

  6. Java面向对象(接口、多态)

    面向对象 今日内容介绍 u 接口 u 多态 第1章 接口 1.1 接口概念 接口是功能的集合,同样可看做是一种数据类型,是比抽象类更为抽象的”类”. 接口只描述所应该具备的方法,并没有具体实现,具体的 ...

  7. asp.net mvc整合Nhibernate的配置方法

    http://blog.csdn.net/xz2001/article/details/8452794 http://www.cnblogs.com/GoodHelper/archive/2011/0 ...

  8. 使用 Kendo UI 库实现对象的继承

    使用 Kendo UI 库实现对象的继承 javaScript 也是一种面向对象的开发语言,但和 C++,Java,C# 所不同的是,它的对象不是基于类(Class),而是基于对象原型(ProtoTy ...

  9. Android端WebRTC点对点互连

    项目准备 信令服务器代码:https://github.com/matthewYang92/WebRtcServer(代码改自ProjectRTC) 安装Node.js 进入项目根目录,命令行:npm ...

  10. 使 windows 无需输入开机密码自动进入系统

    步骤 运行netplwiz: 勾去图中所示复选框,确定后输入密码.