问题描述

LG2766


题解

\(\mathrm{Subtask 1}\)

一个求最长不下降子序列的问题,发现\(n \le 500\),直接\(O(n^2)\)暴力DP即可。

\(\mathrm{Subtask 2}\)

设\(opt_i\)代表区间\([1,i]\),且以\(i\)为结尾的最长不下降子序列。

考虑拆点,把\(i\)拆成\(i\)和\(i+n\)。

如果\(opt_i=1\),则从源点向\(i\)连边。

如果\(opt_i=n\),则从\(i+n\)向汇点连边。

以上两种边边权均为\(INF\)。

接下来从\(i\)向\(i+n\)连边,边权为\(1\),代表每个数只能使用一次。

接下来枚举\(i,j\),且\(i<j\),\(\forall a_j \le a_i\)且\(opt_j=opt_i+1\),在\(j+n,i\)之间连边,边权为\(1\)。

跑\(\mathrm{Dinic}\)即可。

\(\mathrm{Subtask 3}\)

只需要解除\(1\)和\(n\)的流量限制即可。


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-'){
fh=-1;ch=getchar();
}
else fh=1;
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=fh;
} const int maxn=507; int n,a[maxn],len=1;
int opt[maxn],ans;
int S,T;
int Head[20000],v[200000],w[200000],tot=1;
int d[20000],Next[200000];
bool bfs(){
memset(d,0,sizeof(d));
queue<int>q;q.push(S);d[S]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=Head[x];i;i=Next[i]){
if(d[v[i]]||!w[i]) continue;
q.push(v[i]);d[v[i]]=d[x]+1;
if(v[i]==T) return true;
}
}
return false;
} int dfs(int x,int flow){
if(x==T) return flow;
int rest=flow;
for(int i=Head[x];i&&rest;i=Next[i]){
if(d[v[i]]!=d[x]+1||!w[i]) continue;
int k=dfs(v[i],min(rest,w[i]));
if(!k) d[v[i]]=0;
else{
w[i]-=k,w[i xor 1]+=k;
rest-=k;
}
}
return flow-rest;
} void add(int x,int y,int z){v[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;} int main(){
read(n);
for(int i=1;i<=n;i++){
read(a[i]);opt[i]=1;
}
for(int i=1;i<=n;i++){
for(int j=1;j<i;j++){
if(a[i]>=a[j]){
opt[i]=max(opt[i],opt[j]+1);
len=max(opt[i],len);
}
}
}
printf("%d\n",len);S=n*2+1,T=S+1;
for(int i=1;i<=n;i++){
if(opt[i]==1) add(S,i,1),add(i,S,0);
}
for(int i=1;i<=n;i++){
if(opt[i]==len) add(i+n,T,1),add(T,i+n,0);
}
for(int i=1;i<=n;i++) add(i,i+n,1),add(i+n,i,0);
for(int i=1;i<=n;i++){
for(int j=1;j<i;j++){
if(a[i]>=a[j]&&opt[i]==opt[j]+1){
add(j+n,i,1);add(i,j+n,0);
}
}
}
while(bfs()){
int t;
while(t=dfs(S,0x3f3f3f3f)) ans+=t;
}
printf("%d\n",ans);
add(1,1+n,0x3f3f3f3f);add(n+1,1,0);
add(S,1,0x3f3f3f3f);add(1,S,0);
if(opt[n]==len) add(n,n+n,0x3f3f3f3f),add(2*n,n,0),add(n*2,T,0x3f3f3f3f),add(T,n*2,0);
while(bfs()){
ans+=dfs(S,0x3f3f3f3f);
}
printf("%d\n",ans);
return 0;
}

LG2766 最长不下降子序列问题 最大流 网络流24题的更多相关文章

  1. 【Luogu】P2766最长不下降子序列问题(暴力网络流)

    题目链接 水题qwq,数据都那么水. 我要是出数据的人我就卡$n^3$建图. qwq. 然而这么水的题我!居!然!没!有!1!A!!还!提!交!了!五!遍!!! md从现在开始要锻炼1A率了 看我从今 ...

  2. P2766 最长不下降子序列问题 题解(网络流)

    题目链接 最长不下降子序列问题 解题思路 分成三小问解决. 第一小问,求\(LIS\),因为\(n<=500\),直接\(O(N^2)\)暴力求解即可. 第二三小问,建立模型用网络流求解. 对于 ...

  3. 最长不下降子序列(LIS)

    最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...

  4. 最长不下降子序列 O(nlogn) || 记忆化搜索

    #include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...

  5. tyvj 1049 最长不下降子序列 n^2/nlogn

    P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...

  6. 最长不下降子序列的O(n^2)算法和O(nlogn)算法

    一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...

  7. 最长不下降子序列//序列dp

    最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...

  8. 【tyvj】P1049 最长不下降子序列

    时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数 第二行n个数 输出格式 最长不下降子序列的长度 测 ...

  9. hdu 4604 Deque(最长不下降子序列)

    从后向前对已搜点做两遍LIS(最长不下降子序列),分别求出已搜点的最长递增.递减子序列长度.这样一直搜到第一个点,就得到了整个序列的最长递增.递减子序列的长度,即最长递减子序列在前,最长递增子序列在后 ...

随机推荐

  1. [Taro] taro中定义以及使用全局变量

    taro中定义以及使用全局变量 错误的姿势 // app.tsx文件中 class App extends Component { componentDidMount() { this.user = ...

  2. <Tree> 298 250 366 199(高频) 98(高频)

    298. Binary Tree Longest Consecutive Sequence 先序遍历,根左右.如果该节点的 value == 父节点value + 1, 则长度+1; 否则重置为1. ...

  3. 【day08】PHP

    一. 函数 1.函数:封装的,可以重复使用的完成特定功能的代码段. 2.函数分类:   (1)系统函数   (2)自定义函数 3.自定义函数   (1)格式   function 函数名称([参数[= ...

  4. Haproxy 构建负载均衡集群

    1.HAPROXY简介 HAProxy提供高可用性.负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费.快速并且可靠的一种负载均衡解决方案.HAProxy特别适用于那些负载特大的web ...

  5. hive中order by、distribute by、sort by和cluster by的区别和联系

    hive中order by.distribute by.sort by和cluster by的区别和联系 order by order by 会对数据进行全局排序,和oracle和mysql等数据库中 ...

  6. LSTM容易混淆的地方

    1 如果只是学习怎么用LSTM,那么可以这么理解LSTM LSTM可以看成一个仓库,而这个仓库有三个门卫,他们的功能分别是 遗忘门.决定什么样的物品需要从仓库中丢弃. 输入门.决定输入的什么物品用来存 ...

  7. perf性能调优

    工具准备 ubuntu:sudo apt-get install perf 嵌入式平台:下载源码编译 注意:编译过程中会有Auto-detectiing system feature的依赖库打印,注意 ...

  8. 一篇文章帮你彻底搞清楚“I/O多路复用”和“异步I/O”的前世今生

    在网络的初期,网民很少,服务器完全无压力,那时的技术也没有现在先进,通常用一个线程来全程跟踪处理一个请求.因为这样最简单. 其实代码实现大家都知道,就是服务器上有个ServerSocket在某个端口监 ...

  9. 记录一个终端入网小助手的bug

    背景:技术leader拿到一台超薄笔记本,系统标准化安装,笔记本一开机风扇嗡嗡响,键盘也开始发烫,资源占用排名前三的进程都是终端管理软件,一下子就找上门了.处理:进程分析发现异常,卸载入网小助手后恢复 ...

  10. 【JS】---4用JS获取地址栏参数方法

    用JS获取地址栏参数方法 // 方法一:采用正则表达式获取地址栏参数:( 强烈推荐,既实用又方便!) function GetQueryString(name) { var reg = new Reg ...