在多分类问题中,我们可以使用 softmax 函数,对输出的值归一化为概率值。下面举个例子:

import sys

sys.path.append("E:/zlab/")
from plotnet import plot_net, DynamicShow num_node_list = [10, 7, 5]
figsize = (15, 6)
plot_net(num_node_list, figsize, 'net')
Press `c` to save figure to "net.svg", `Ctrl+d` to break >>
> c:\programdata\anaconda3\lib\site-packages\viznet\context.py(45)__exit__()
-> plt.savefig(self.filename, dpi=300)
(Pdb) c

上图转换为表达式:

\[\begin{aligned}
&a^{(0)} = (a_0^{(0)}, a_1^{(0)}, \cdots, a_9^{(0)})^T\\
&a^{(1)} = (a_0^{(1)}, a_1^{(1)}, \cdots, a_6^{(1)})^T\\
&a^{(2)} = (a_0^{(2)}, a_1^{(2)}, \cdots, a_4^{(2)})^T\\
\end{aligned}
\]

对于任意的 \(0 \leq i \leq 2\), 有前向传播的表达式:

\[\begin{aligned}
&z^{(i+1)} = W^{(i)}a^{(i)} + b^{(i)}\\
&a^{(i+1)} = f^{(i+1)}(z^{(i+1)})
\end{aligned}
\]

其中,\(f^{(j)}\) 表示激活函数,除了输出层外,一般使用 ReLU 函数;\(W^{(i)}, b^{(i)}\) 为模型参数。

如若我们有 \(m\) 个样本 \(\{x^{(j)}\}_{j=1}^m\) 组成的数据集 \(D\), 称 \(X = (x^{(1)}, x^{(2)}, \cdots, x^{(m)})^T\) 为数据集 \(D\) 的设计矩阵

这样,前向传播可以改写为:

\[\begin{cases}
Z^{(1+i)} = Z^{(i)}W^{(0)} + (b^{(i)})^T\\
A^{(1+i)} = f^{(1+i)}(Z^{(1+i)})
\end{cases}
\]

  • \(Z^{(i)} = (z_1^{(i)}, z_2^{(i)}, \cdots, z_m^{(i)})^T\), 这里对 \(z^{(i)}\) 添加下标以区别不同的样本;
  • 这里对列向量 \(b^{(i)}\) 进行了 broadcast 操作;
  • 且 \(Z^{(0)} = X\).

对于多分类问题,一般输出层对应的激活函数的 softmax 函数:

求解 \(A^{(2)}\):

  1. 计算 \(exp = \exp(Z^{(1)})\);
  2. 对 \(exp\) 按列做归一化, 便可得到 \(\text{softmax}(A^{(1)})\).
import numpy as np

def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(axis=1, keepdims=True)
return X_exp / partition # 这里应用了广播机制。
softmax([[2, 3,4], [3, 5, 7]])
array([[0.09003057, 0.24472847, 0.66524096],
[0.01587624, 0.11731043, 0.86681333]])

但如果输入值较大或较小时,会出现内存溢出的现象:

softmax([1000, 1000, 100])
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\__main__.py:5: RuntimeWarning: overflow encountered in exp
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\__main__.py:7: RuntimeWarning: invalid value encountered in true_divide array([nan, nan, 0.])
softmax([-10000, -1020, 100, -70220])
array([0., 0., 1., 0.])

一种简单有效避免该问题的方法就是让 \(\exp(z_j)\) 中的 \(z_j\) 替换为 \(z_j - \max_{i} \{z_i\}\), 由于 \(\max_{i}\) 是个固定的常数,所以 \(\exp(z_j)\) 的值没有改变。但是,此时避免了溢出现象的出现。

def softmax(X):
X = np.asanyarray(X)
X -= X.max(axis=-1, keepdims=True)
X_exp = np.exp(X)
print(X_exp)
partition = X_exp.sum(axis=-1, keepdims=True)
return X_exp / partition # 这里应用了广播机制。
softmax([1000, 1000, 100])
[1. 1. 0.]

array([0.5, 0.5, 0. ])
softmax([-10000, -1020, 100, -7220])
[0. 0. 1. 0.]

array([0., 0., 1., 0.])
softmax([-10000, -1020, 100, -70220])
[0. 0. 1. 0.]

array([0., 0., 1., 0.])

当然这种做法也不是最完美的,因为 softmax 函数不可能产生 0 值,但这总比出现 nan 的结果好,并且真实的结果也是非常接近 \(0\) 的。

除此之外,还有一个问题:如果我们计算 \(\log \text{softmax} (z_j)\) 时,先计算 \(\text{softmax}\) 再将其传递给 \(\log\),会错误的得到 \(-\infty\)

np.log(softmax([-10000, -1020, 100, -70220]))
[0. 0. 1. 0.]

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\__main__.py:1: RuntimeWarning: divide by zero encountered in log
if __name__ == '__main__': array([-inf, -inf, 0., -inf])

最简单的处理方式是直接加一个很小的常数:

np.log(softmax([-10000, -1020, 100, -70220])+ 1e-7)
[0. 0. 1. 0.]

array([-1.61180957e+01, -1.61180957e+01,  9.99999951e-08, -1.61180957e+01])

为了解决此数值计算的不稳定,MXNet 提供了:

from mxnet.gluon import loss as gloss
loss = gloss.SoftmaxCrossEntropyLoss()

解决计算交叉熵时出现的数值不稳定的问题。

更多数据挖掘内容见:datamining

softmax 杂谈的更多相关文章

  1. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  2. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  3. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

  4. 前馈网络求导概论(一)·Softmax篇

    Softmax是啥? Hopfield网络的能量观点 1982年的Hopfiled网络首次将统计物理学的能量观点引入到神经网络中, 将神经网络的全局最小值求解,近似认为是求解热力学系统的能量最低点(最 ...

  5. 【转】PHP 杂谈《重构-改善既有代码的设计》之一 重新组织你的函数

    原文地址: PHP 杂谈<重构-改善既有代码的设计>之一 重新组织你的函数 思维导图   点击下图,可以看大图.    介绍   我把我比较喜欢的和比较关注的地方写下来和大家分享.上次我写 ...

  6. Derivative of the softmax loss function

    Back-propagation in a nerual network with a Softmax classifier, which uses the Softmax function: \[\ ...

  7. Softmax回归

    Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...

  8. softmax分类器+cross entropy损失函数的求导

    softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...

  9. 【管理心得之三十二】PMP杂谈---------爱情必胜术

    这次一反常态,没有场景设计,我想借此文普及一下PMP是什么? 但我不知道这样枯燥的话题能否能引起你的兴趣,我不得不套用“标题党”<爱情必胜术>来博你眼球. 我真没有说谎,此文是献给那些孤身 ...

随机推荐

  1. Flash数据的采集方法-搜房房价走势采集

    一般来说flash中的数据是不能被现有技术很容易采集到的,但是也不能谈flash色变,要具体问题具体分析,有些flash是可以通过一些分析发现背后的数据.然后采集就变得很容易了. 具体案例:搜房房价走 ...

  2. Concat层解析

    Concat层的作用就是将两个及以上的特征图按照在channel或num维度上进行拼接,并没有eltwise层的运算操作,举个例子,如果说是在channel维度上进行拼接conv_9和deconv_9 ...

  3. css3 加载动画效果

    Loading 动画效果一           HTML 代码: <div class="spinner"> <div class="rect1&quo ...

  4. CMD命令利用tasklist与taskkill关闭程序

    昨天远程服务器后,服务器无故卡住了,鼠标各种延迟与无反应,想在进程管理器里关闭程序也卡住,想点击重启系统也卡死无反应.纠结后win+R打开了cmd用shutdown重启才算搞定.重启期间思考了下,如何 ...

  5. CCN与CDN区别

    CCN与CDN区别 相同点: 1.针对目前互联网上存在问题,提出解决方案,让数据传输更快更稳定. 2.都均衡网络流量. 区别: 1.CDN是内容分发网络,是基于目前的TCP/IP体系结构的补充方法.C ...

  6. K/V式枚举

    public enum OType { LOGIN { public String getDesc() { return "登录"; } }, ADD { public Strin ...

  7. AngularJS中ng-class使用方法

    转自:https://blog.csdn.net/jumtre/article/details/50802136 其他博文ng-class使用方法:https://blog.csdn.net/sina ...

  8. node练习笔记

    一.用http模块实现客户端 1.   这个错误的原因是:客户端http_client.js里面的端口和服务端里面的端口不一样 2.querystring.stringify  字符串转换成对象  q ...

  9. tensorflow中的boolean_mask

    将mask中所有为true的抽取出来,放到一起,这里从n维降到1维度 tensor = [[1, 2], [3, 4], [5, 6]] import numpy as np mask=np.arra ...

  10. 前端打包工具之fis3的初级使用

    说到打包工具,大家都会想到webpack,我之前也接触过webpack,说实话个人觉得webpack上手容易,但是对于新手来说里面有太多坑,配置文件也不简单.于是乎,我转入了fis3阵营,发现fis3 ...