洛谷 P4018 Roy&October之取石子
洛谷 P4018 Roy&October之取石子
题目背景
Roy和October两人在玩一个取石子的游戏。
题目描述
游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。
现在October先取,问她有没有必胜策略。
若她有必胜策略,输出一行"October wins!";否则输出一行"Roy wins!"。
输入输出格式
输入格式:
第一行一个正整数T,表示测试点组数。
第2行~第(T+1)行,一行一个正整数n,表示石子个数。
输出格式:
T行,每行分别为"October wins!"或"Roy wins!"。
输入输出样例
3
4
9
14
October wins!
October wins!
October wins!
说明
对于30%的数据,1<=n<=30;
对于60%的数据,1<=n<=1,000,000;
对于100%的数据,1<=n<=50,000,000,1<=T<=100,000。
(改编题)
题解:
其实结论很简单,
一.首先,1,2,3,4,5都可以一次取到,当n=6时,第一个人先取1-5个,无论怎么取,第二个人全去走就赢了。
二.对于6的倍数,一定不能是质数的K次方,证明:先是除2以外的质数都是奇数,而奇数乘奇数都是奇数,故6的倍数全不是n的K次方;对于2,由于6中存在因数3,故6*n也不是2的K次方。
三.对于12,第一个人取1-5个,第二个人直接取到剩下6个,就变成了情况一,第一个人取不到6个,若去6个以上,则直接败;
四.归纳6*n。第一个人无法去6的倍数个,第二个人只要将数压倒6*m(m<n)就会慢慢推到情况二,就又是第一个人输。
五。对于非6的倍数,第一个人只要去1-5个,使之变成6的倍数,就变成情况四了。
所以,只有当a为六的倍数时,Roy才能赢。
#include<cstdio>
#include<iostream>
using namespace std;
int main(){
int t,a;
scanf("%d",&t);
for(int i=;i<=t;i++){
scanf("%d",&a);
if(a%!=)
printf("October wins!\n");
else
printf("Roy wins!\n");
}
return ;
}
AC
一世安宁
洛谷 P4018 Roy&October之取石子的更多相关文章
- 洛谷——P4018 Roy&October之取石子
P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...
- 洛谷P4018 Roy&October之取石子
题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...
- 洛谷P4018 Roy&October之取石子 题解 博弈论
题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...
- 洛谷P4860 Roy&October之取石子II 题解 博弈论
题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...
- P4018 Roy&October之取石子
题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...
- luogu P4018 Roy&October之取石子(博弈论)
题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...
- 洛谷 Roy&October之取石子
题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...
- [luogu4018][Roy&October之取石子]
题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...
- [luogu4860][Roy&October之取石子II]
题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...
随机推荐
- Oracle EBS 报表日期格式问题
1.确保参数日期值集选择:FND_STANDARD_DATE 2.将程序的入口参数选择为 varchar2类型 3.注意输出和游标时参数的截断 to_date(substr(p_DATE_from, ...
- 使用Percona MySQL 5.7版本遇到的坑
监控DB由于使用的TokuDB引擎,因此选择使用Percona MySQL 5.7版本,在使用过程中遇到了比较多的坑,在这里做一下简单的记录,希望对广大DBA有帮助. load文件飙升导致的DB雪崩 ...
- 15. DML, DDL, LOGON 触发器
触发器可以理解为由特定事件触发的存储过程, 和存储过程.函数一样,触发器也支持CLR,目前SQL Server共支持以下几种触发器: 1. DML触发器, 表/视图级有效,可由DML语句 (INSER ...
- [控件] 动态实时设置CAShapeLayer贝塞尔曲线的坐标点
动态实时设置CAShapeLayer贝塞尔曲线的坐标点 效果图: 源码: PathDirectionView.h 与 PathDirectionView.m // // PathDirectionVi ...
- October 03rd 2017 Week 40th Tuesday
Don't make promises you can't keep. But those are the best kind. 不要许下做不到的承诺,但是我们做不到的承诺往往是最好的. The be ...
- September 25th 2017 Week 39th Monday
No man is rich enough to buy back his own past. 没有人富有到可以赎回自己的过去. Those rich are not willing to buy b ...
- 第一次项目冲刺(Alpha版本)2017/11/17
一.当天站立式会议 会议内容 1.对数据库的设计的进一步讨论 2.讨论SSH一些配置细节 3.分配今天的任务 二.任务分解图 三.燃尽图 四.心得 刚接触冲刺,一开始任务没有分布很多,大家要一些熟悉的 ...
- SQLMap-----初识
前言 昨天收到一封来自客户网络中心发来的邮件,说是之前的一个项目存在sql注入漏洞,并附上了一张sqlmap检测结果的图片.记得第一次接触sql注入这些关于系统安全的问题还是从老师口中得知,当时也了解 ...
- PHP设计模式系列 - 外观模式
外观模式 通过在必需的逻辑和方法的集合前创建简单的外观接口,外观设计模式隐藏了调用对象的复杂性. 外观设计模式和建造者模式非常相似,建造者模式一般是简化对象的调用的复杂性,外观模式一般是简化含有很多逻 ...
- java StringBuilder案例
实现输出字符串的长度,容量(容量不够则扩容),及内容 import java.util.Arrays; public class MyStringBuilderDemo { //任务:存储字符串并输出 ...