洛谷 P4018 Roy&October之取石子

题目背景

Roy和October两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在October先取,问她有没有必胜策略。

若她有必胜策略,输出一行"October wins!";否则输出一行"Roy wins!"。

输入输出格式

输入格式:

第一行一个正整数T,表示测试点组数。

第2行~第(T+1)行,一行一个正整数n,表示石子个数。

输出格式:

T行,每行分别为"October wins!"或"Roy wins!"。

输入输出样例

输入样例#1: 

3
4
9
14
输出样例#1: 

October wins!
October wins!
October wins!

说明

对于30%的数据,1<=n<=30;

对于60%的数据,1<=n<=1,000,000;

对于100%的数据,1<=n<=50,000,000,1<=T<=100,000。

(改编题)

题解:

其实结论很简单,

一.首先,1,2,3,4,5都可以一次取到,当n=6时,第一个人先取1-5个,无论怎么取,第二个人全去走就赢了。

二.对于6的倍数,一定不能是质数的K次方,证明:先是除2以外的质数都是奇数,而奇数乘奇数都是奇数,故6的倍数全不是n的K次方;对于2,由于6中存在因数3,故6*n也不是2的K次方。

三.对于12,第一个人取1-5个,第二个人直接取到剩下6个,就变成了情况一,第一个人取不到6个,若去6个以上,则直接败;

四.归纳6*n。第一个人无法去6的倍数个,第二个人只要将数压倒6*m(m<n)就会慢慢推到情况二,就又是第一个人输。

五。对于非6的倍数,第一个人只要去1-5个,使之变成6的倍数,就变成情况四了。

所以,只有当a为六的倍数时,Roy才能赢。

 #include<cstdio>
#include<iostream>
using namespace std;
int main(){
int t,a;
scanf("%d",&t);
for(int i=;i<=t;i++){
scanf("%d",&a);
if(a%!=)
printf("October wins!\n");
else
printf("Roy wins!\n");
}
return ;
}

AC

      一世安宁

洛谷 P4018 Roy&October之取石子的更多相关文章

  1. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  2. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  3. 洛谷P4018 Roy&October之取石子 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...

  4. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  5. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  6. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  7. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

随机推荐

  1. Oracle EBS 报表日期格式问题

    1.确保参数日期值集选择:FND_STANDARD_DATE 2.将程序的入口参数选择为 varchar2类型 3.注意输出和游标时参数的截断  to_date(substr(p_DATE_from, ...

  2. 使用Percona MySQL 5.7版本遇到的坑

    监控DB由于使用的TokuDB引擎,因此选择使用Percona MySQL 5.7版本,在使用过程中遇到了比较多的坑,在这里做一下简单的记录,希望对广大DBA有帮助. load文件飙升导致的DB雪崩 ...

  3. 15. DML, DDL, LOGON 触发器

    触发器可以理解为由特定事件触发的存储过程, 和存储过程.函数一样,触发器也支持CLR,目前SQL Server共支持以下几种触发器: 1. DML触发器, 表/视图级有效,可由DML语句 (INSER ...

  4. [控件] 动态实时设置CAShapeLayer贝塞尔曲线的坐标点

    动态实时设置CAShapeLayer贝塞尔曲线的坐标点 效果图: 源码: PathDirectionView.h 与 PathDirectionView.m // // PathDirectionVi ...

  5. October 03rd 2017 Week 40th Tuesday

    Don't make promises you can't keep. But those are the best kind. 不要许下做不到的承诺,但是我们做不到的承诺往往是最好的. The be ...

  6. September 25th 2017 Week 39th Monday

    No man is rich enough to buy back his own past. 没有人富有到可以赎回自己的过去. Those rich are not willing to buy b ...

  7. 第一次项目冲刺(Alpha版本)2017/11/17

    一.当天站立式会议 会议内容 1.对数据库的设计的进一步讨论 2.讨论SSH一些配置细节 3.分配今天的任务 二.任务分解图 三.燃尽图 四.心得 刚接触冲刺,一开始任务没有分布很多,大家要一些熟悉的 ...

  8. SQLMap-----初识

    前言 昨天收到一封来自客户网络中心发来的邮件,说是之前的一个项目存在sql注入漏洞,并附上了一张sqlmap检测结果的图片.记得第一次接触sql注入这些关于系统安全的问题还是从老师口中得知,当时也了解 ...

  9. PHP设计模式系列 - 外观模式

    外观模式 通过在必需的逻辑和方法的集合前创建简单的外观接口,外观设计模式隐藏了调用对象的复杂性. 外观设计模式和建造者模式非常相似,建造者模式一般是简化对象的调用的复杂性,外观模式一般是简化含有很多逻 ...

  10. java StringBuilder案例

    实现输出字符串的长度,容量(容量不够则扩容),及内容 import java.util.Arrays; public class MyStringBuilderDemo { //任务:存储字符串并输出 ...