https://www.luogu.org/problem/show?pid=1516

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入输出格式

输入格式:

输入只包括一行5个整数x,y,m,n,L

其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。

输出格式:

输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。

输入输出样例

输入样例#1:

1 2 3 4 5
输出样例#1:

4

说明

各个测试点2s

线性同余方程,exgcd模板

 #include <algorithm>
#include <iostream>
#include <cstdio> using namespace std; int x,y,m,n,L; int exgcd(int a,int b,int &x,int &y)
{
if(!b)
{
x=;y=;
return a;
}
int ret,tmp;
ret=exgcd(b,a%b,x,y);
tmp=x;
x=y;
y=tmp-a/b*y;
return ret;
} int main()
{
scanf("%d%d%d%d%d",&x,&y,&m,&n,&L);
long long a=n-m,b=L,tot=x-y;
if(a<) a=-a,tot=-tot;
long long gcd=exgcd(a,b,x,y);
x=tot/gcd*x;
if(tot%gcd!=)
cout<<"Impossible";
else cout<<(x%L+L)%L;
return ;
}

P1516 青蛙的约会 洛谷的更多相关文章

  1. 洛谷 P1516 青蛙的约会 解题报告

    P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  2. 洛谷——P1516 青蛙的约会

    P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  3. P1516 青蛙的约会和P2421 [NOI2002]荒岛野人

    洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数 ...

  4. P1516 青蛙的约会

    P1516 青蛙的约会x+mt-p1L=y+nt-p2L(m-n)t+L(p2-p1)=y-x令p=p2-p1(m-n)t+Lp=y-x然后套扩欧就完事了 #include<iostream&g ...

  5. 解题报告:luogu P1516 青蛙的约会

    题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...

  6. 洛谷 p1516 青蛙的约会 题解

    dalao们真是太强了,吊打我无名蒟蒻 我连题解都看不懂,在此篇题解中,我尽量用语言描述,不用公式推导(dalao喜欢看公式的话绕道,这篇题解留给像我一样弱的) 进入正题 如果不会扩展欧里几德的话请先 ...

  7. 洛谷P1516 青蛙的约会(扩展欧几里德)

    洛谷题目传送门 很容易想到,如果他们相遇,他们初始的位置坐标之差\(x-y\)和跳的距离\((n-m)t\)(设\(t\)为跳的次数)之差应该是模纬线长\(l\)同余的,即\((n-m)t\equiv ...

  8. 【题解】P1516 青蛙的约会(Exgcd)

    洛谷P1516:https://www.luogu.org/problemnew/show/P1516 思路: 设两只青蛙跳了T步 则A的坐标为X+mT   B的坐标为Y+nT 要使他们相遇 则满足: ...

  9. 洛谷P1516 青蛙的约会

    题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清 ...

随机推荐

  1. 初识mybatis之入门案例

    我也是自学了一下,在idea中基于maven的mybatis的配置.有什么不对的地方,请指正,谢谢. 1.1咋们先来配置测试一下,配置mybatis的图解: 1.2 pom.xml需要mybatis的 ...

  2. C#模拟百度登录并到指定网站评论回帖(三)

    上次说到怎么获取BAIDUID,这个相信很多人都能够拿到就不多说了,今天一连说两个,获取token和raskey 2.利用以上获得的cookie直接访问页面 https://passport.baid ...

  3. Hadoop的数据采集框架

    问题导读: Hadoop数据采集框架都有哪些? Hadoop数据采集框架异同及适用场景? Hadoop提供了一个高度容错的分布式存储系统,帮助我们实现集中式的数据分析和数据共享.在日常应用中我们比如要 ...

  4. 滚动时sticky nav

    参考w3c <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <met ...

  5. python行与缩进

    #python行与缩进 1.了解逻辑行与物理行 2.行中分号使用规则 3.行链接 4.什么是缩进 5.如何缩进 6.注释 1.python中逻辑行主要是指一段代码,在意义上它的行数,而物理行,指的是我 ...

  6. 对比hive和mysql 复杂逻辑流处理

      1.Mysql中可用存储过程和函数来实现复杂逻辑处理,两者的对比如下:存储过程作为可执行文件,编译一次放在数据库中,函数又返回值.可设定使用权限. 存储过程中可使用游标,声明变量.用call调用. ...

  7. ionic3视频播放功能

    因为项目的需要,需要使用视频播放的功能,使用的是videogular2插件,但是报了一个无法识别video-player 这个标签,百度了很多,发现原来是版本 不对,ionic3是以来angular5 ...

  8. <MySQL>入门四 事务控制语言 TCL

    -- TCL /* Transcation Control Language 事务控制语言 事务:一个或一组sql语句组成一个执行单元,这个执行单元要么全部执行,要么全部不执行 案例:转账 name ...

  9. linux初步学习有感

    经过了一段时间对linux的接触,从最开始接触到的deepin到后来我最喜欢的KaliLinux,感受到了这个我曾经并不了解的操作系统的独特魅力. 我是到了大学才知道linux这个系统的,但是在小时候 ...

  10. buf.write()

    buf.write(string[, offset[, length]][, encoding]) string {String} 需要被写入到 Buffer 的字节 offset {Number} ...