kmeans是一种无监督的聚类问题,在使用前一般要进行数据标准化, 一般都是使用欧式距离来进行区分,主要是通过迭代质心的位置

来进行分类,直到数据点不发生类别变化就停止,

一次分类别,一次变换质心,就这样不断的迭代下去

优势:使用方便
劣势:1.K值难确定

2. 复杂度与样本数量呈线性关系

3.很难发现形状任意的簇

4.容易受初始点的影响

python中使用 sklearn.cluster 模块,使用的时候需要指定参数

第一步:导入数据,提取数据中的变量保存为X

import pandas as pd
beer = pd.read_csv('data.txt', sep=' ') X = beer[["calories","sodium","alcohol","cost"]]

第二步:进行kmans聚类分析

from  sklearn.cluster import KMeans

km = KMeans(n_clusters=3).fit(X)  #聚成三蔟
km2 = KMeans(n_clusters=2).fit(X) #聚成两蔟 beer['cluster'] = km.labels_ #返回聚类的标签结果
beer['cluster2'] = km2.labels_ beer.sort_values('cluster') #根据'cluster'进行排序

第三步:根据分类结果画出带颜色的散点图,及其混淆矩阵

from  pandas.tools.plotting import  scatter_matrix

cluster_center = km.cluster_centers_

cluster_center_2 = km2.cluster_centers_

# print(beer.groupby('cluster').mean())  #groupby进行快速分组,mean求平均
#
# print(beer.groupby('cluster2').mean()) centers = beer.groupby("cluster").mean().reset_index() #reset_index()重新添加了序号 import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 14 #rcParams 用于修改字体的大小 import numpy as np
color = np.array(['red', 'green', 'yellow', 'blue']) plt.scatter(beer['calories'], beer['alcohol'], c=color[beer['cluster']]) plt.scatter(centers.calories, centers.alcohol, linewidths=3, marker='+', s=300, c='black') scatter_matrix(beer[["calories","sodium","alcohol","cost"]], s=100,alpha = 1 ,c=color[beer['cluster']],\
figsize=(10, 10)) #alpha 代表不透明的意思
plt.suptitle("With 3 centroids initialized") plt.show()

第四步:对数据进行标准化,再进行kmeans聚类

from sklearn.preprocessing import  StandardScaler
scaler = StandardScaler()
X_scaler = scaler.fit_transform(X) #进行转换
new_X_scaler = pd.DataFrame(X_scaler, columns=["calories","sodium","alcohol","cost"]) km = KMeans(n_clusters=3).fit(X_scaler) beer['scaler_cluster'] = km.labels_ beer.sort_values('scaler_cluster') print(beer.groupby('scaler_cluster').mean()) scatter_matrix(new_X_scaler, alpha = 1 ,c=color[beer.scaler_cluster]) plt.show()

第五步:为了比较处理前后的效果,我们引入了轮廓系数 metrics.silhouette_score,发现未标准化的分类结果要好于标准化

from sklearn import metrics
score_scaled = metrics.silhouette_score(X,beer.scaler_cluster)
score = metrics.silhouette_score(X,beer.cluster)
print(score_scaled, score)

第六步: 我们使用轮廓系数(b(i)-a(i))/max(b(i), a(i)), b(i)一个点到自己蔟的距离,a(i)表示一个点到其他蔟的距离,来挑选蔟的参数n_clusters

scores = []
for i in range(2, 15): print(metrics.silhouette_score(X,KMeans(n_clusters=i).fit(X).labels_)) #X变量,KMeans(n_clusters=i).fit(X).labels_分类得到的标签
scores.append(metrics.silhouette_score(X,KMeans(n_clusters=i).fit(X).labels_)) plt.plot(list(range(2, 15)), scores) plt.xlabel('迭代次数') plt.ylabel('轮廓系数') plt.show()

跟我学算法聚类(kmeans)的更多相关文章

  1. 推荐算法-聚类-K-MEANS

    对于大型的推荐系统,直接上协同过滤或者矩阵分解的话可能存在计算复杂度过高的问题,这个时候可以考虑用聚类做处理,其实聚类本身在机器学习中也常用,属于是非监督学习的应用,我们有的只是一组组数据,最终我们要 ...

  2. 跟我学算法聚类(DBSCAN)

    DBSCAN 是一种基于密度的分类方法 若一个点的密度达到算法设定的阖值则其为核心点(即R领域内点的数量不小于minPts) 所以对于DBSCAN需要设定的参数为两个半径和minPts 我们以一个啤酒 ...

  3. 【转】算法杂货铺——k均值聚类(K-means)

    k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...

  4. [数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现

    聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记 ...

  5. 浅谈聚类算法(K-means)

    聚类算法(K-means)目的是将n个对象根据它们各自属性分成k个不同的簇,使得簇内各个对象的相似度尽可能高,而各簇之间的相似度尽量小. 而如何评测相似度呢,采用的准则函数是误差平方和(因此也叫K-均 ...

  6. 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记

    机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...

  7. 数学建模及机器学习算法(一):聚类-kmeans(Python及MATLAB实现,包括k值选取与聚类效果评估)

    一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结 ...

  8. 机器学习-聚类-k-Means算法笔记

    聚类的定义: 聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,它是无监督学习. 聚类的基本思想: 给定一个有N个对象的数据集 ...

  9. 机器学习聚类算法之K-means

    一.概念 K-means是一种典型的聚类算法,它是基于距离的,是一种无监督的机器学习算法. K-means需要提前设置聚类数量,我们称之为簇,还要为之设置初始质心. 缺点: 1.循环计算点到质心的距离 ...

随机推荐

  1. HihoCoder1049 后序遍历 分治水题

    水题,是为了给难题(树形DP)做铺垫 描述 在参与过了美食节之后,小Hi和小Ho在别的地方又玩耍了一阵子,在这个过程中,小Ho得到了一个非常有意思的玩具——一棵由小球和木棍连接起来的二叉树! 小Ho对 ...

  2. 项目文件中的已知 NuGet 属性(使用这些属性,创建 NuGet 包就可以不需要 nuspec 文件啦)

    知道了 csproj 文件中的一些常用 NuGet 属性,创建 NuGet 包时就可以充分发挥新 Sdk 自动生成 NuGet 包的优势,不需要 nuspec 文件啦.(毕竟 nuspec 文件没有 ...

  3. SEO SEM

    SEO:搜索引擎优化SEM:搜索引擎营销 SEO排名机制:搜索引擎蜘蛛 权重 算法 排名规则 搜索引擎提交入口: 1.百度搜索网站登入口 2.Google网站登入口 3.360搜索引擎登入入口 4.搜 ...

  4. CentOS 中安装NFS

    NFS(network file system)网络文件系统,类似Windows中的文件夹共享,如下有三台机器A, B, C,它们需要访问同一个目录,目录中都是图片,传统的做法是把这些图片分别放到A, ...

  5. oracle之 12.1.0.1.0 C 在 linux 7 上安装报错处理

    环境说明:-- os[root@host-172-16-3-132 ~]# cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) - ...

  6. saiku3.8二次开发项目搭建(非maven)

    参考文章:http://blog.csdn.net/gsying1474/article/details/51603535 本文大部分参考了上面的博文,这里只是做一个记录,由于本人maven能力有限, ...

  7. Linux Shell read命令

    linux read 用法 1.基本读取 read命令接收标准输入(键盘)的输入,或其他文件描述符的输入(后面在说).得到输入后,read命令将数据放入一个标准变量中.下面是 read命令 的最简单形 ...

  8. (转)Inno Setup入门(二十一)——Inno Setup类参考(7)

    本文转载自:http://blog.csdn.net/yushanddddfenghailin/article/details/17268435 复选框 复选框(CheckBox)用于多个并不互斥的几 ...

  9. java代码--------打印三角形

    总结:这里主要是for循环里的j<=i而不死j<=i-1;.还有先打印“*” 再打印空格.换行.理解.请用脑子啊 package com.sads; public class Dds { ...

  10. common-lang3-version.jar 提供java.lang的扩展功能

    Apache Commons Lang 3.6 API