有一种定理,叫毕克定理。。。。

                            Area
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4352   Accepted: 1977

Description

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.

 
Figure 1: Example area. 
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself. 

Input

The first line contains the number of scenarios. 
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units. 

Output

The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.

Sample Input

2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3

Sample Output

Scenario #1:
0 4 1.0

Scenario #2:
12 16 19.0

Source

 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath> using namespace std; const int maxn=; int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
} struct point
{
double x,y;
point() {}
point(double a,double b):x(a),y(b){}
}; double det(point a,point b)
{
return a.x*b.y-a.y*b.x;
} struct polyon
{
int n;
point a[maxn];
polyon() {}
double GetArea()
{
double sum=;
a[n]=a[];
for(int i=;i<n;i++)
{
sum+=det(a[i+],a[i]);
}
return fabs(sum/.);
} int Border_Int_Point_Num()
{
int num=;
a[n]=a[];
for(int i=;i<n;i++)
{
num+=gcd(abs(int(a[i+].x-a[i].x)),abs(int(a[i+].y-a[i].y)));
}
return num;
} int Inside_Int_Point_Num(int x,double area)
{
return int(area)+-x/;
}
}PY; int main()
{
int t,cas=;
scanf("%d",&t);
while(t--)
{
scanf("%d",&PY.n);
int X=,Y=;
for(int i=;i<PY.n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
X+=a; Y+=b;
PY.a[i].x=X; PY.a[i].y=Y;
}
double area=PY.GetArea();
int On=PY.Border_Int_Point_Num();
int In=PY.Inside_Int_Point_Num(On,area);
printf("Scenario #%d:\n",cas++);
printf("%d %d %.1lf\n\n",In,On,area);
}
return ;
}

POJ 1265 Area的更多相关文章

  1. poj 1265 Area 面积+多边形内点数

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5861   Accepted: 2612 Description ...

  2. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  3. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  4. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  5. poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】

    题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...

  6. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

  7. poj 1265 Area(Pick定理)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5666   Accepted: 2533 Description ...

  8. poj 1265 Area(pick定理)

    Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...

  9. 2018.07.04 POJ 1265 Area(计算几何)

    Area Time Limit: 1000MS Memory Limit: 10000K Description Being well known for its highly innovative ...

随机推荐

  1. 数据结构算法C语言实现(九)--- 拓展:由迷宫问题引申的AI贪吃蛇

    一.简述 [开发中]由于期末时间有限,而且要用到后面的最短路径(可能),所以打算小学期在实现这一部分

  2. CF 702B Powers of Two(暴力)

    题目链接: 传送门 Devu and Partitioning of the Array time limit per test:3 second     memory limit per test: ...

  3. SSH 学习总结-01 SSH整合环境

    一 Struts2+Spring3+Hibernate4+Maven 整合环境 1 开发工具 1)JDK下载地址:http://www.oracle.com/technetwork/java/java ...

  4. SaltStack之Job管理和Runner(八)

    SaltStack之Job管理和Runner 配置文件/etc/salt/master cachedir: /var/cache/salt/master # cache路径 keep_jobs: 24 ...

  5. python学习笔记-(六)深copy&浅copy

    在python中,对象赋值实际上是对象的引用.当创建一个对象,然后把它赋给另一个变量的时候,python并没有拷贝这个对象,而只是拷贝了这个对象的引用. 1. 赋值 赋值其实只是传递对象引用,引用对象 ...

  6. socket传数据并记录到文件中

    最近在新项目中要通过socket传一些数据,下面是程序: 功能: 将客户端发送的json数据写入到日志文件中,如果数据不是json的,丢弃. 程序如下: #!/usr/bin/env python # ...

  7. Linux修改oracle 10g的字符集

    修改数据库字符集为:ZHS16GBK查看服务器端字符集SQL > select * from V$NLS_PARAMETERS修改:$sqlplus /nologSQL>conn / as ...

  8. linux安装pip

    1.先说一下什么是pippip 是"A tool for installing and managing Python packages.",也就是说pip是python的软件安装 ...

  9. 自然语言9_NLTK计算中文高频词

    以下代码仅限于python2 NLTK计算中文高频词 >>> sinica_fd=nltk.FreqDist(sinica_treebank.words()) >>> ...

  10. NumberFormat类

    NumberFormat表示数字的格式化类,即可以按照本地的风格习惯进行数字的显示. NumberFormat是一个抽象类,和MessageFormat类一样,都是Format类的子类,本类在使用时可 ...