Toy Storage
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3146   Accepted: 1798

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore.
Reza's parents came up with the following idea. They put cardboard
partitions into the box. Even if Reza keeps throwing his toys into the
box, at least toys that get thrown into different partitions stay
separate. The box looks like this from the top:



We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The
input consists of a number of cases. The first line consists of six
integers n, m, x1, y1, x2, y2. The number of cardboards to form the
partitions is n (0 < n <= 1000) and the number of toys is given in
m (0 < m <= 1000). The coordinates of the upper-left corner and
the lower-right corner of the box are (x1, y1) and (x2, y2),
respectively. The following n lines each consists of two integers Ui Li,
indicating that the ends of the ith cardboard is at the coordinates
(Ui, y1) and (Li, y2). You may assume that the cardboards do not
intersect with each other. The next m lines each consists of two
integers Xi Yi specifying where the ith toy has landed in the box. You
may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For
each box, first provide a header stating "Box" on a line of its own.
After that, there will be one line of output per count (t > 0) of
toys in a partition. The value t will be followed by a colon and a
space, followed the number of partitions containing t toys. Output will
be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

Source

 
 
这题和POJ 2318 是一样的
就是最后输出的内容不一样而已。
 
/************************************************************
* Author : kuangbin
* Email : kuangbin2009@126.com
* Last modified : 2013-07-13 17:15
* Filename : POJ2398TOYStorage.cpp
* Description :
* *********************************************************/ #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std;
struct Point
{
int x,y;
Point(){}
Point(int _x,int _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
int operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
}; int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
const int MAXN = ;
Line line[MAXN];
int ans[MAXN];
int num[MAXN];
bool cmp(Line a,Line b)
{
return a.s.x < b.s.x;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m,x1,y1,x2,y2;
while(scanf("%d",&n) == && n)
{
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
int Ui,Li;
for(int i = ;i < n;i++)
{
scanf("%d%d",&Ui,&Li);
line[i] = Line(Point(Ui,y1),Point(Li,y2));
}
line[n] = Line(Point(x2,y1),Point(x2,y2));
sort(line,line+n+,cmp);
int x,y;
Point p;
memset(ans,,sizeof(ans));
while( m-- )
{
scanf("%d%d",&x,&y);
p = Point(x,y);
int l = ,r = n;
int tmp;
while( l <= r)
{
int mid = (l + r)/;
if(xmult(p,line[mid].s,line[mid].e) < )
{
tmp = mid;
r = mid - ;
}
else l = mid + ;
}
ans[tmp]++;
}
for(int i = ;i <= n;i++)
num[i] = ;
for(int i = ;i <= n;i++)
if(ans[i]>)
num[ans[i]]++;
printf("Box\n");
for(int i = ;i <= n;i++)
if(num[i]>)
printf("%d: %d\n",i,num[i]);
}
return ;
}
 

POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)的更多相关文章

  1. POJ 2398 Toy Storage (叉积判断点和线段的关系)

    题目链接 Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4104   Accepted: 2433 ...

  2. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  3. poj 2398 Toy Storage(计算几何 点线关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4588   Accepted: 2718 Descr ...

  4. POJ2318:TOYS(叉积判断点和线段的关系+二分)&&POJ2398Toy Storage

    题目:http://poj.org/problem?id=2318 题意: 给定一个如上的长方形箱子,中间有n条线段,将其分为n+1个区域,给定m个玩具的坐标,统计每个区域中的玩具个数.(其中这些线段 ...

  5. POJ 2398 Toy Storage(计算几何)

    题意:给定一个如上的长方形箱子,中间有n条线段,将其分为n+1个区域,给定m个玩具的坐标,统计每个区域中的玩具个数. 题解:通过斜率判断一个点是否在两条线段之间. /** 通过斜率比较点是否在两线段之 ...

  6. POJ 2398 Toy Storage(叉积+二分)

    Description Mom and dad have a problem: their child, Reza, never puts his toys away when he is finis ...

  7. POJ 2398 Toy Storage 二分+叉积

    Description Mom and dad have a problem: their child, Reza, never puts his toys away when he is finis ...

  8. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  9. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

随机推荐

  1. 最全的PHP常用函数大全

    PHP的一些常用函数 quotemeta() 函数在字符串中某些预定义的字符前添加反斜杠. quoted_printable_decode() 函数对经过 quoted-printable 编码后的字 ...

  2. LA 4725 (二分) Airport

    题意: 有W.E两个跑道,在每个时刻每个跑道的飞机都从0开始编号,而且每个时刻都有Wi和Ei架飞机到达这两个跑道.而且每个时刻只能选择一个跑道的一架飞机起飞.问如何选择才能使得飞机的最大编号最小.(每 ...

  3. 微软推出首个Microsoft Azure Stack技术预览版

    Mike Neil,微软公司企业云副总裁 怀着对于提高业务灵活性.加速创新的期待,很多企业正在向云平台迅速迁移.伴随着这样的趋势,我们也见证了微软智能云Azure业务在全球市场的快速增长--每个月近1 ...

  4. (转)python 优先队列

    #!/usr/bin/python from Queue import Queue from Queue import PriorityQueue a1='a1' a2='a2' a3='a3' a4 ...

  5. Java多线程-工具篇-BlockingQueue

    前言: 在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题.通过这些高效并且线程安全的队列 类,为我们快速搭建高质量的多线程程序带来极大的 ...

  6. Oracle 性能相关常用脚本(SQL)

    在缺乏的可视化工具来监控数据库性能的情形下,常用的脚本就派上用场了,下面提供几个关于Oracle性能相关的脚本供大家参考.以下脚本均在Oracle 10g测试通过,Oracle 11g可能要做相应调整 ...

  7. 浅谈C#浅拷贝和深拷贝

    近来爱上一本书<编写高质量代码,改善C#程序的157个建议>,我想很多人都想编写高质量的代码,因为我们不仅仅是码农,更是一名程序员. 从今天开始,我将每天和大家分享这本书中的内容,并加上自 ...

  8. Spring3.0将全面支持REST

    Rod Johnson上个月底说,Spring 3.0全面支持REST风格的Web服务. "We're really seeing extensive interest and growth ...

  9. 【原创】Linux下编译链接中常见问题总结

    前言 一直以来对Linux下编译链接产生的问题没有好好重视起来,出现问题就度娘一下,很多时候的确是在搜索帮助下解决了BUG,但由于对原因不求甚解,没有细细研究,结果总是在遇到在BUG时弄得手忙脚乱得. ...

  10. MYSQL性能查看(命中率,慢查询)

    网上有很多的文章教怎么配置MySQL服务器,但考虑到服务器硬件配置的不同,具体应用的差别,那些文章的做法只能作为初步设置参考,我们需要根据自己的情况进行配置优化,好的做法是MySQL服务器稳定运行了一 ...