UVA 10214 Trees in a Wood(欧拉函数)
题意:给你a、b(a<=2000,b<=2000000),问你从原点可以看到范围在(-a<=x<=a,-b<=y<=b)内整数点的个数
题解:首先只需要计算第一象限的点得到答案为ans,再计算ans*4+4就好了;原因是四象限一样,接着上下左右各加上一个点
在第一象限上就是求x属于[1,a]y属于[1,b]时gcd(x,y)==1的总个数
可以想到欧拉函数phi[i]=n,因为他的定义就是小于等于i的正整数中有n个与i互质
而且根据gcd(a,b)=gcd(a+b,a)=gcd(2*a+b,a),因此可以使用i枚举a
通过求出欧拉函数在[1,i][i+1,2*i]...各有phi[i]个进行计算,接着多了不能成为一个完整区间的一些值就直接暴力
import java.text.DecimalFormat;
import java.util.Scanner; public class Main{ static int Max=2010;
static int[] phi=new int[Max]; static{
phi[1]=1;
for(int i=2;i<Max;++i){
if(phi[i]==0){
for(int j=i;j<Max;j+=i){
if(phi[j]==0)
phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
} public static void main(String[] args) {
long n,m;
Scanner sc=new Scanner(System.in);
while(sc.hasNext()){
n=sc.nextLong();
m=sc.nextLong();
if(n+m==0L)
break;
DecimalFormat df=new DecimalFormat("0.0000000");//小数点后7位
System.out.println(df.format(Solve(n,m)));
}
} private static Double Solve(long n, long m) {
long res=0L;
for(int i=1;i<=n;++i){
long multipe=m/i;
res+=multipe*phi[i];//倍数直接增加 for(int j=(int) (multipe*i+1);j<=m;++j){
if(Gcd(i,j)==1)
res++;
}
}
return ((double)res*4+4)/((n*2.0+1)*(m*2.0+1)-1.0);
} private static int Gcd(int i, int j) {
if(j==0)
return i;
else
return Gcd(j, i%j);
} }
UVA 10214 Trees in a Wood(欧拉函数)的更多相关文章
- UVa 10214 - Trees in a Wood.(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 10214 Trees in a Wood
https://vjudge.net/problem/UVA-10214 题意:你站在原点,每个坐标位置有一棵高度相同的树,问能看到多少棵树 ans=Σ gcd(x,y)=1 欧拉函数搞搞 #incl ...
- UVa 10820 - Send a Table(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)题解
思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...
- UVa 10214 Trees in a Wood. (数论-欧拉函数)
题意:给定一个abs(x) <= a, abs(y) <= b,除了原点之外的整点各有一棵树,可以相互阻挡,求从原点可以看到多少棵树. 析:由于a < b,所以我们可以一列一列的统计 ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 GCD - Extreme (II) (数论|欧拉函数)
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
随机推荐
- JZOJ.5236【NOIP2017模拟8.7】利普希茨
Description
- 【BZOJ4388】JOI2012 invitation 堆+线段树+并查集(模拟Prim)
[BZOJ4388]JOI2012 invitation Description 澳洲猴举办了一场宴会,他想要邀请A个男生和B个女生参加,这A个男生从1到A编号,女生也从1到B编号.现在澳洲猴知道n组 ...
- String 转 List<Map<String, Object>>
public static List<Map<String, Object>> toListMap(String json){ List<Object> list ...
- phpstorm的设置
1.编码:file encodings 2.怎么让每次新建的php文件取消开头的注释:file and code templates ->php file 去掉那个一串代码就可以了
- celery中的生产者消费者问题
celery中的生产者消费者问题 在task1.py文件中: # demo1:task.py and celery.py in one file# run it byfrom celery impor ...
- PBR工作流
目标是让substance效果和unity效果一致 分2步: 1.完成1个shader,效果和standard完全一致,抛去不需要的功能 2.使用新的shader,在substance里替代原有的渲染 ...
- KMP算法最浅显理解——一看就明确
说明 KMP算法看懂了认为特别简单,思路非常easy,看不懂之前.查各种资料,看的稀里糊涂.即使网上最简单的解释,依旧看的稀里糊涂. 我花了半天时间,争取用最短的篇幅大致搞明确这玩意究竟是啥. 这里不 ...
- C++之(::)运算符详解
::运算符 (::)是运算符中等级最高的,作用有三种,都是左关联的,都是为了更明确自己调用的对象或者函数: 全局作用域 类作用域 命名空间作用域 1.全局作用域 #include<iostrea ...
- 阿里云配置mysql远程连接
默认是不能用客户端远程连接的,阿里云提供的help.docx里面做了设置说明,mysql密码默认存放在/alidata/account.log 首先登录: mysql -u root -h local ...
- Servlet中参数获取方法
在web.xml里面可以定义两种参数: 一种是全局范围的参数, 一种是servlet内的参数. web.xml里定义参数的应用举例:在做分页功能时,可以在代码中直给定pageSize的值,这样,写死在 ...