[NOIP1998 提高组] 拼数
题目描述
设有 n 个正整数 a1…an,将它们联接成一排,相邻数字首尾相接,组成一个最大的整数。
输入格式
第一行有一个整数,表示数字个数 n。
第二行有 n 个整数,表示给出的 n 个整数 a_i。
输出格式
一个正整数,表示最大的整数
输入输出样例
输入 #1
3
13 312 343
输出 #1
34331213
输入 #2
4
7 13 4 246
输出 #2
7424613
说明/提示
对于全部的测试点,保证 1≤n≤20,1≤a_i ≤10^9 。
题目大意:给你n个正整数,把它们重新排列,使得排列后形成的数最大。
可以使用STL中的string类来解决。
1 #include<iostream>
2 #include<algorithm>
3 using namespace std;
4 const int maxn=25;
5 int n;
6 string in[maxn];
7 bool cmp(const string &a,const string &b) //重载cmp
8 {
9 return a+b>b+a;
10 }
11 int main()
12 {
13 cin>>n;
14 for(int i=1;i<=n;i++)
15 cin>>in[i];
16 sort(in+1,in+1+n,cmp);
17 for(int i=1;i<=n;i++)
18 cout<<in[i];
19 cout<<endl;
20 return 0;
21 }
[NOIP1998 提高组] 拼数的更多相关文章
- NOIP1998 提高组
[NOIP2002] 提高组 T2.联接数 算法:贪心+字符串处理 [问题分析]: 按整数对应的字符串大到小连接,因为题目的例子都符合,但是不难找到反例:12 121 应该组成12121而非121 ...
- noip1998 提高组t3 挖地雷
题目背景 NOIp1996提高组第三题 题目描述 在一个地图上有N个地窖(N<=20),每个地窖中埋有一定数量的地雷.同时,给出地窖之间的连接路径.当地窖及其连接的数据给出之后,某人可以从任一处 ...
- NOIP1998提高组 题解报告
T1 进制位 题目大意:自己看吧 首先让我们来看两个引理: 如果有解,则进制一定为\(n - 1\) 如果有解,则字母一定表示\(0\) 至 \(n - 1\) 的数 证明如下: 因为有 \(n - ...
- 洛谷-拼数-NOIP1998提高组复赛
题目描述 Description 设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数. 例如:n=3时,3个整数13,312,343联接成的最大整数为:34331213 又如:n=4 ...
- 洛谷 1012 拼数(NOIp1998提高组)
[题解] 我们要做的就是把这些数排序.排序的时候判断两个数是否交换的方法,就是把这两个数相接形成两个长度相同的数字,比较这两个数字的大小. #include<cstdio> #includ ...
- [NOIP1998] 提高组 洛谷P1012 拼数
题目描述 设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数. 例如:n=3时,3个整数13,312,343联接成的最大整数为:34331213 又如:n=4时,4个整数7,13,4 ...
- NOIP 2002提高组 选数 dfs/暴力
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…, ...
- [NOIP1998] 提高组 洛谷P1013 进制位
题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...
- [洛谷 P1013] NOIP1998 提高组 进制位
问题描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...
随机推荐
- SQL Server 数据库基本使用技巧
use master; #显示数据库 select top 3 * from spt_values; #显示去前3行 select * from test where id2 like '%1010% ...
- CTF密码学常见加解密总结
CTF密码学常见加解密总结 2018年03月10日 19:35:06 adversity` 本文链接:https://blog.csdn.net/qq_40836553/article/details ...
- layui中select的change事件、动态追加option
说明:layui中用jquery 中的选择器例如$('#id').change(function(){})发现不起作用 layui操作:lay-felter标识操作哪个select html部分: & ...
- 一、HttpRunner学习汇总
HttpRunner是一款面向Http和HTTPS协议的通用测试框架,只需编写维护一份YAML/JSON脚本即可实现自动化测试.性能测试.线上监控.持续集成等多种测试需求,是基于关键字驱动的框架,基于 ...
- 基于linux信号的timeout装饰器
在做基于ray的分布式任务处理时,偶尔遇到由于ray集群不稳定导致的长时间连接不上,进而导致程序卡死,无法向后端返回任务状态的情况.但是ray的初始化函数本身未实现超时机制,因此设计基于多线程+信号的 ...
- [MySQL数据库之数据库相关概念、MySQL下载安装、MySQL软件基本管理、SQL语句]
[MySQL数据库之数据库相关概念.MySQL下载安装.MySQL软件基本管理.SQL语句] 数据库相关概念 数据库管理软件的由来 数据库管理软件:本质就是个C/S架构的套接字程序. 我们在编写任何程 ...
- Spring Cloud Alibaba Nacos Discovery 实战
Nacos 作为服务注册中心,可以快速简单的将服务自动注册到 Nacos 服务端,并且能够动态无感知的刷新某个服务实例的服务列表,为分布式系统提供服务注册与发现功能 一.创建服务 1.创建项目 pom ...
- [bug] Docker:Error ruuning deviceCreate(createSnapDevice) dm_task_run failed
原因 删除容器时报错,元信息出错,需要修复 最后一个参数要改成自己docker元信息路径,如: thin_check --clear-needs-check-flag /var/lib/docker/ ...
- 关于jmeter线程组和循环次数的设置
初始设置:设置线程数 n = 80,循环次数a = 1,ramp-up period=5 一 计算最后一个线程的生成时间(last) 总共生成80个线程,总共需要5秒,每秒钟会启动16个线程,所以,第 ...
- 064.Python开发虚拟环境
在使用 Python 开发的过程中,工程一多,难免会碰到不同的工程依赖不同版本的库的问题:亦或者是在开发过程中不想让物理环境里充斥各种各样的库,引发未来的依赖灾难.此时,我们需要对于不同的工程使用不同 ...