POJ 2007--Scrambled Polygon(计算凸包,点集顺序)
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 10094 | Accepted: 4765 |
Description
A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn't have any "dents".) 
The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem.
The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0).
To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point.

Input
Output
Sample Input
0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10
Sample Output
(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)
Source
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn = ;
typedef struct point {
double x, y;
point() { }
point(double a, double b) {
x = a;
y = b;
}
point operator -(const point &b) const{
return point(x - b.x, y - b.x);
}
double operator *(const point &b)const {
return x*b.x + y*b.y;
}
}point;
point p[maxn];
int n=, res[maxn];
int top;//top模拟栈顶
bool cmp(point a, point b) {
if (a.y == b.y) return a.x < b.x;
return a.y < b.y;
}
bool multi(point p1, point p2, point p0) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向,>0,p1p0在p2p0的顺时针方向
return (p1.x - p0.x)*(p2.y - p0.y) >= (p2.x - p0.x)*(p1.y - p0.y);
}
void Graham(){
int i, len;//top模拟栈顶
sort(p, p + n, cmp);
top = ;
//少于3个点也就没有办法形成凸包
if (n == )return; res[] = ;
if (n == )return; res[] = ;
if (n == )return; res[] = ;
for (i = ; i < n; i++) {
while (top&&multi(p[i], p[res[top]], p[res[top - ]])) //如果当前这个点和栈顶两个点构成折线右拐了,就回溯到上一个点
top--; //弹出栈顶
res[++top] = i; //否则将这个点入栈
}
len = top;
res[++top] = n - ;
for (i = n - ; i >= ; i--) {
while (top!=len&&multi(p[i], p[res[top]], p[res[top - ]]))
top--;
res[++top] = i;
}
}
int main(void) {
int i, s;//s为起点坐标
while (scanf("%lf%lf", &p[n].x, &p[n].y)!=EOF)n++;
Graham();
for (s = ; s < top; s++) {
if (!p[res[s]].x && !p[res[s]].y) //找到原点
break;
}
for (i = s; i < top; i++) {
printf("(%.lf,%.lf)\n",p[res[i]].x, p[res[i]].y);
}
for (i = ; i < s; i++) {
printf("(%.lf,%.lf)\n", p[res[i]].x, p[res[i]].y);
}
return ;
}
POJ 2007--Scrambled Polygon(计算凸包,点集顺序)的更多相关文章
- POJ 2007 Scrambled Polygon 凸包
Scrambled Polygon Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7214 Accepted: 3445 ...
- POJ 2007 Scrambled Polygon [凸包 极角排序]
Scrambled Polygon Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8636 Accepted: 4105 ...
- POJ 2007 Scrambled Polygon 极角序 水
LINK 题意:给出一个简单多边形,按极角序输出其坐标. 思路:水题.对任意两点求叉积正负判断相对位置,为0则按长度排序 /** @Date : 2017-07-13 16:46:17 * @File ...
- POJ 2007 Scrambled Polygon 凸包点排序逆时针输出
题意:如题 用Graham,直接就能得到逆时针的凸包,找到原点输出就行了,赤果果的水题- 代码: /* * Author: illuz <iilluzen[at]gmail.com> * ...
- poj 2007 Scrambled Polygon(极角排序)
http://poj.org/problem?id=2007 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6701 A ...
- ●POJ 2007 Scrambled Polygon
题链: http://poj.org/problem?id=2007 题解: 计算几何,极角排序 按样例来说,应该就是要把凸包上的i点按 第三像限-第四像限-第一像限-第二像限 的顺序输出. 按 叉积 ...
- 简单几何(极角排序) POJ 2007 Scrambled Polygon
题目传送门 题意:裸的对原点的极角排序,凸包貌似不行. /************************************************ * Author :Running_Time ...
- POJ 2007 Scrambled Polygon(简单极角排序)
水题,根本不用凸包,就是一简单的极角排序. 叉乘<0,逆时针. #include <iostream> #include <cstdio> #include <cs ...
- POJ 2007 Scrambled Polygon (简单极角排序)
题目链接 题意 : 对输入的点极角排序 思路 : 极角排序方法 #include <iostream> #include <cmath> #include <stdio. ...
- poj 2007 Scrambled Polygon 极角排序
/** 极角排序输出,,, 主要atan2(y,x) 容易失精度,,用 bool cmp(point a,point b){ 5 if(cross(a-tmp,b-tmp)>0) 6 retur ...
随机推荐
- kafka自定义序列化器
<kafka权威指南> Customer.java public class Customer { private int customId; private String custome ...
- initBinder转换日期格式
@Controller public class FirstController { @RequestMapping("/first") //类型转化工作一定是在真正的handle ...
- STL库中string类内存布局的探究
在STL中有着一个类就是string类,他的内存布局和存储机制究竟是怎么样的呢? 这就是建立好的string 可以看出,图中用黄色框框标注的部分就是主要区域 我们用来给string对象进行初始化的字符 ...
- css 盒模型 文档流 几种清除浮动的方法
盒模型 1.box-sizing: content-box 是普通的默认的一种盒子表现模式 盒子大小为 width + padding + border content-box:此值为其默认值,其 ...
- HTML标签 链接 随笔3
4-1 <a>标签 网页链接 使用<a>标签可实现超链接,它在网页制作中可以说是无处不在,只要有链接的地方,就会有这个标签. 语法: <a href="目标网 ...
- 微信小程序问题总结
1.navigator不能跳转到tabBar所包含的页面 例如: tabbar包含center页面,不包含page1页面,使用如下跳转: <navigator url='../center/ce ...
- JMeter 配置元件之-HTTP Cookie管理器-实现 Cookie 登录
下面以购物App常用的收藏功能为例,讲述如何在 JMeter 中使用 cookie 进行登录态操作.具体的操作步骤如下所示: 第一步.录制查看收藏列表的 HTTP请求: 录制查看收藏列表的HTTP请求 ...
- 操作Active Directory C#
.Net平台操作活动目录Active Directory,使用System.DirectoryServices.ActiveDirectory,主要是User OU 和Group的操作. 代码运行了一 ...
- SQL Server ->> CLR存储过程枚举目录文件并返回结果集
因工作需要写了个CLR存储过程枚举目录文件并返回结果集 using System; using System.IO; using System.Collections.Generic; using S ...
- 【Spring实战】—— 7 复杂集合类型的注入
之前讲解了Spring的基本类型和bean引用的注入,接下来学习一下复杂集合类型的注入,例如:List.Set.Map等. 对于程序员来说,掌握多种语言是基本的技能. 我们这里做了一个小例子,程序员们 ...