传送门

设$dp[i][j][k][0/1]$表示在涂点$(i,j)$,涂了$k$次,当前点的颜色是否对,最多能刷对多少个格子

首先换行的时候肯定得多刷一次

然后是如果和前一个格子颜色相同,那么当前点是否刷对都要转移

如果和前一个格子颜色不相同,那么就考虑是否要再刷一次还是直接转移

 //minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int n,m,t,dp[N][N][N*N][],col[N][N],ans;
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),t=read();
for(int i=;i<=n;++i) for(int j=;j<=m;++j){
char ch;while((ch=getc())!=''&&ch!='');
col[i][j]=ch-'';
}
for(int i=;i<=n;++i) for(int j=;j<=m;++j) for(int k=;k<=t;++k){
if(j==){
dp[i][j][k][]=max(dp[i-][m][k-][],dp[i-][m][k-][]);
dp[i][j][k][]=max(dp[i-][m][k-][],dp[i-][m][k-][])+;
}else{
if(col[i][j]==col[i][j-]){
dp[i][j][k][]=dp[i][j-][k][]+;
dp[i][j][k][]=dp[i][j-][k][];
}else{
dp[i][j][k][]=max(dp[i][j-][k-][]+,dp[i][j-][k][]+);
dp[i][j][k][]=max(dp[i][j-][k][],dp[i][j-][k-][]);
}
}cmax(ans,max(dp[i][j][k][],dp[i][j][k][]));
}
printf("%d\n",ans);
return ;
}

洛谷P4158 [SCOI2009]粉刷匠的更多相关文章

  1. 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)

    次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...

  2. 洛谷 P4158 [SCOI2009]粉刷匠 题解

    每日一题 day59 打卡 Analysis 很容易看出是一个dp, dp[i][j[k][0/1]来表示到了(i,j)时,刷了k次,0表示这个没刷,1表示刷了. 于是有转移: 1.换行时一定要重新刷 ...

  3. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  4. P4158 [SCOI2009]粉刷匠(洛谷)

    今天A了个紫(我膨胀了),他看起来像个贪心一样,老师说我写的是dp(dp理解不深的缘故QWQ) 直接放题目描述(我旁边有个家伙让我放链接,我还是说明出处吧(万一出处没有了)我讲的大多数题目都是出自洛谷 ...

  5. P4158[SCOI2009]粉刷匠

    题目描述 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被 ...

  6. 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠

    P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...

  7. 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)

    [BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...

  8. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  9. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

随机推荐

  1. xtu read problem training 4 A - Moving Tables

    Moving Tables Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on ZJU. Original ...

  2. DFS template and summary

    最近一直在学习Deep Frist Search,也在leetcode上练习了不少题目.从最开始的懵懂,到现在遇到问题基本有了思路.依然清晰的记得今年2月份刚开始刷题的时做subsets的那个吃力劲, ...

  3. 洛谷 P4470 [BJWC2018]售票

    P4470 [BJWC2018]售票 C 市火车站最近出现了一种新式自动售票机.买票时,乘客要先在售票机上输入终点名称.一共有N 处:目的地,随着乘客按顺序输入终点名称的每个字母,候选终点站数目会逐渐 ...

  4. Ubuntu 16.04安装WinRAR/7-Zip(基于CrossOver)

    基于CrossOver的WinRAR/7-Zip有如下缺点: 1.不能像Windows那样右键菜单解压 可以解决的问题: 1.可以使用提供的浏览工具进行文件选择再解压,只是在操作上多一步. 2.类似百 ...

  5. Ubuntu 16.04使用百度云的方案

    Ubuntu没有很好的解决方案,都是一些投机取巧的方案: 1.不建议安装百度云客户端,尤其对于免费用户来说,会限制速度. 2.可以使用网页版进行文件上传. 3.下载可以通过Chrome点击下载后,复制 ...

  6. sum over使用方法,以及与group by的差别

    1.sum over使用方法 sum(col1) over(partition by col2 order by col3 ) 以上的函数能够理解为:按col2 进行分组(partition ),每组 ...

  7. yarn使用

    参数中有中括号和尖括号,我们要识别以下区别: [] :可选项 <>:必选项 初始化一个新的项目 yarn init 添加一个依赖包 yarn add [package] yarn add ...

  8. CodeForces484A Bits(贪心)

    CodeForces484A Bits(贪心) CodeForces484A 题目大意:给出范围[A.B].期望你给出某个数X满足X属于[A,B],而且X转成二进制的1的个数最多.假设有多个给出最小的 ...

  9. CNN卷积神经网络的改进(15年最新paper)

    回归正题,今天要跟大家分享的是一些 Convolutional Neural Networks(CNN)的工作. 大家都知道,CNN 最早提出时,是以一定的人眼生理结构为基础,然后逐渐定下来了一些经典 ...

  10. $.extent()的理解

    $.extend()主要是用来扩展插件的,所谓的插件就是封装好的函数或者方法,可以直接调用. $.extend()与$.fn.extend()(或者写成$.prototype.extend()或者jq ...