设置进程池爬取拉钩网:

# coding = utf-
import json
import pymongo
import pandas as pd
import requests
from lxml import etree
import time
from multiprocessing import Pool # 设置mongodb
client = pymongo.MongoClient('localhost')
db = client['lagou']
# 查询的岗位名称
POSITION_NAME = '数据挖掘'
# 想要爬取的总页面数
PAGE_SUM =
# 每页返回的职位数量
PAGE_SIZE =
# 指定数据库的名字
DATA_NAME = "DataMiningPosition" base_url = 'https://m.lagou.com/search.json?city=%E5%85%A8%E5%9B%BD&positionName={positionName}' \
'&pageNo={pageNo}&pageSize={pageSize}' def page_index(pageno):
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip, deflate",
"Accept-Language": "zh-CN,zh;q=0.9",
# cookie能不要尽量不要,这里正好不用cookie也可以正常返回数据
# "Cookie": "user_trace_token=20181119151914-03711263-38a2-4d81-bd81-5f480d930039; _ga=GA1.2.605262108.1542611954; _gid=GA1.2.249787972.1542611954; LGSID=20181119151916-6c3da9fa-ebcb-11e8-8958-5254005c3644; PRE_UTM=; PRE_HOST=www.baidu.com; PRE_SITE=https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3DOnHWjpEfiW4_pVm7hX8NYOFm0iJ7bz1ZJJlaKPPnmMzLE-6ypKNo0f19ABO5bjW4%26wd%3D%26eqid%3D8f61629100016e18000000065bf263e7; PRE_LAND=https%3A%2F%2Fwww.lagou.com%2Fgongsi%2F147.html; LGUID=20181119151916-6c3dabf3-ebcb-11e8-8958-5254005c3644; index_location_city=%E5%85%A8%E5%9B%BD; JSESSIONID=ABAAABAAAGCABCC2D851CA25D1CFCD2B28DCDD6E00A2C7E; _ga=GA1.3.605262108.1542611954; X_HTTP_TOKEN=a0cc1a4beb8a41f57f144bc0bfd77bd7; sajssdk_2015_cross_new_user=1; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%221672adb3834203-08b3706084b44a-3961430f-1327104-1672adb3835428%22%2C%22%24device_id%22%3A%221672adb3834203-08b3706084b44a-3961430f-1327104-1672adb3835428%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22%22%2C%22%24latest_referrer_host%22%3A%22%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%7D%7D; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1542611954,1542612053,1542612277,1542612493; _gat=1; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1542613115; LGRID=20181119153837-20bafb1a-ebce-11e8-8958-5254005c3644",
"Host": "m.lagou.com",
"Proxy-Connection": "keep-alive",
"Referer": "http://m.lagou.com/search.html",
"X-Requested-With": "XMLHttpRequest",
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/45.0.2454.85 Safari/537.36 115Browser/6.0.3',
}
url = base_url.format(positionName=POSITION_NAME, pageNo=pageno, pageSize=PAGE_SIZE)
response = requests.get(url, headers=headers)
html = response.text
content = json.loads(html)
print(content)
if content.get("content"):
return content
else:
time.sleep()
return page_index(pageno) def parse_page_index(content): for i in range():
try:
item = content['content']['data']['page']['result'][i]
#print(item)
yield {
'positionId': item.get('positionId'),
'positionName': item.get('positionName'),
'city': item.get('city'),
'createTime': item.get('createTime'),
'salary': item.get('salary'),
'companyId': item.get('companyId'),
'companyFullName': item.get('companyFullName')
}
except IndexError as e:
print('可能没有那么多字段', e) def save_to_mongo(data):
if db[DATA_NAME].update({'positionId': data['positionId']}, {'$set': data}, True):
print('Saved to Mongo', data['positionId'])
else:
print('Saved to Mongo Failed', data['positionId']) def parse_detail(url):
# url = "http://m.lagou.com/jobs/4593934.html"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36",
"Accept": "text / html, application / xhtml + xml, application / xml;q = 0.9, image / webp, image / apng, * / *;q = 0.8",
"Accept - Encoding": "gzip, deflate",
"Accept - Language": "zh - CN, zh;q = 0.9",
"Cache - Control": "max - age = 0",
"Connection": "eep - alive",
# "Cookie": "_ga=GA1.2.474762156.1528795210; _gid=GA1.2.574638607.1528795210; user_trace_token=20180612172010-cdf76dc1-6e21-11e8-9af0-525400f775ce; LGUID=20180612172010-cdf772c0-6e21-11e8-9af0-525400f775ce; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1528795210,1528795215,1528795223; index_location_city=%E5%85%A8%E5%9B%BD; X_HTTP_TOKEN=f3ed266ddeee802fb7d402e4f6d4f4a3; JSESSIONID=ABAAABAAAFDABFG9F9C52FA9D8CAE24F139A0131C45E918; _ga=GA1.3.474762156.1528795210; _gat=1; LGSID=20180612184248-597a7795-6e2d-11e8-9479-5254005c3644; PRE_UTM=; PRE_HOST=; PRE_SITE=http%3A%2F%2Fm.lagou.com%2Fsearch.html; PRE_LAND=http%3A%2F%2Fm.lagou.com%2Fjobs%2F4079910.html; LGRID=20180612184505-ab051d02-6e2d-11e8-9479-5254005c3644; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1528800306" }
try:
response = requests.get(url, headers=headers)
if response.status_code == :
print("请求成功")
text = response.content.decode()
# print(text)
html = etree.HTML(text)
workyear = html.xpath('//span[@class="item workyear"]/span/text()')
if workyear:
workyear = workyear[]
else:
time.sleep()
parse_detail(url)
positiondesc = html.xpath('//div[@class="positiondesc"]//p/text()')
#print(workyear, positiondesc)
return workyear, positiondesc
except Exception as e:
print(e) # 将爬取的数据存到Mongodb
def to_mongo(page_sum):
# 拉勾网顶多只能显示到334页
for page in range(page_sum):
html = page_index(page)
items = parse_page_index(html)
# print(items)
for item in items:
print(item)
save_to_mongo(item) # 运用进程池将爬取的数据存到Mongodb
def to_mongo_pool(page):
# 拉勾网顶多只能显示到334页
content = page_index(page)
items = parse_page_index(content)
# print(items)
for item in items:
print(item)
save_to_mongo(item) # 解析爬取的字条,以便把数据转为DataFrame格式
def parse_items(page_sum):
for page in range(page_sum):
html = page_index(page)
items = parse_page_index(html)
for item in items:
positionId = item["positionId"]
detail_url = "http://m.lagou.com/jobs/{}.html".format(positionId)
workyear, positiondesc = parse_detail(detail_url)
print(positionId,positiondesc)
yield [
item["positionId"],
item["positionName"],
item["city"],
item["createTime"],
item["salary"],
item["companyId"],
item["companyFullName"],
workyear,
positiondesc
] # 把数据保存为csv格式
def to_csv(page_sum):
item_lists = []
# print(parse_items())
for item in parse_items(page_sum):
item_lists.append(item)
#print(item_lists)
data = pd.DataFrame(item_lists,
columns=["positionId", "positionName", "city", "createTime", "salary", "companyId",
"companyFullName", "workyear", "positiondesc"])
data.to_csv("python_positon.csv") if __name__ == '__main__': #to_csv
#to_mongo()
# 建议保存到mongodb数据库中 start_time = time.time()
pool = Pool() # pool()参数:进程个数:默认的是电脑cpu的核的个数,如果要指定进程个数,这个进程个数要小于等于cpu的核数
# 第一个参数是一个函数体,不需要加括号,也不需指定参数。。
# 第二个参数是一个列表,列表中的每个参数都会传给那个函数体
pool.map(to_mongo_pool,[i for i in range(PAGE_SUM)])
# close它只是把进程池关闭
pool.close()
# join起到一个阻塞的作用,主进程要等待子进程运行完,才能接着往下运行
pool.join()
end_time = time.time()
print("总耗费时间%.2f秒" % (end_time - start_time))

进程池爬取并存入mongodb的更多相关文章

  1. python进程池爬取下载美女图片(xpath)--lowbiprogrammer

    # -*- coding: utf-8 -*-import requests,osfrom lxml import etreeimport multiprocessingfrom retrying i ...

  2. 基于requests模块的cookie,session和线程池爬取

    目录 基于requests模块的cookie,session和线程池爬取 基于requests模块的cookie操作 基于requests模块的代理操作 基于multiprocessing.dummy ...

  3. 5 使用ip代理池爬取糗事百科

    从09年读本科开始学计算机以来,一直在迷茫中度过,很想学些东西,做些事情,却往往陷进一些技术细节而蹉跎时光.直到最近几个月,才明白程序员的意义并不是要搞清楚所有代码细节,而是要有更宏高的方向,要有更专 ...

  4. Python使用Scrapy框架爬取数据存入CSV文件(Python爬虫实战4)

    1. Scrapy框架 Scrapy是python下实现爬虫功能的框架,能够将数据解析.数据处理.数据存储合为一体功能的爬虫框架. 2. Scrapy安装 1. 安装依赖包 yum install g ...

  5. Python爬虫-代理池-爬取代理入库并测试代理可用性

    目的:建立自己的代理池.可以添加新的代理网站爬虫,可以测试代理对某一网址的适用性,可以提供获取代理的 API. 整个流程:爬取代理 ----> 将代理存入数据库并设置分数 ----> 从数 ...

  6. 42.scrapy爬取数据入库mongodb

    scrapy爬虫采集数据存入mongodb采集效果如图: 1.首先开启服务切换到mongodb的bin目录下 命令:mongod --dbpath e:\data\db 另开黑窗口 命令:mongo. ...

  7. 使用requests、BeautifulSoup、线程池爬取艺龙酒店信息并保存到Excel中

    import requests import time, random, csv from fake_useragent import UserAgent from bs4 import Beauti ...

  8. 使用requests、re、BeautifulSoup、线程池爬取携程酒店信息并保存到Excel中

    import requests import json import re import csv import threadpool import time, random from bs4 impo ...

  9. 19 03 13 关于 scrapy 框架的 对环球网的整体爬取(存储于 mongodb 数据库里)

    关于  spinder  在这个框架里面   和不用数据库  相同 # -*- coding: utf-8 -*- import scrapy from yang_guan.items import ...

随机推荐

  1. IE jQuery ajax 请求缓存问题

    我最近在IE下测试开发我们的系统,经常出现改过的jsp页面,刷新IE后也不能显示,这就是IE的缓存问题,查了一下百度,说是IE9在ajax进行请求时,如果两次请求url相同,则不会请求服务器,而是从缓 ...

  2. eclipse导出svn源码,如何转化为项目

    1.先导出 2.点击项目右键,选“属性” 3.选择project facets 4.添加对应的支持 5.可进行进一步配置,设置name,然后点击确定等待完成

  3. Javascript的组成——EMACScript、DOM、BOM

    EMACScript:一种规范,JS必须准守它的约定,JS的核心. DOM:文档对象模型,W3C标准,JS访问HTML文档的接口. BOM:浏览器对象模型,没有统一的标准.JS访问浏览器的接口. EM ...

  4. 开源的电商 B2C、B2B2C 电商系统-关于shopnc版权问题处处是陷阱啊

    最近有好多人收到过shopnc的律师函,关于这可能大部分人都是在淘宝购买的,或者直接在33hao购买的.很多人可能没注意版权的问题,以为在33hao购买就没问题,但这只是陷阱,大家一定要注意 来源:h ...

  5. (Bash博弈 大数) 51nod1068 Bash游戏 V3

    1068 Bash游戏 V3   有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量只能是2的正整数次幂,比如(1,2,4,8,16....),拿到最后1颗石子的人获胜.假设A B都非常聪明 ...

  6. (线性dp 最大子段和 最大子矩阵和)POJ1050 To the Max

    To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54338   Accepted: 28752 Desc ...

  7. Python三十个常见的脚本汇总

    1.冒泡排序     2.计算x的n次方的方法     这里有我自己整理了一套最新的python系统学习教程,包括从基础的python脚本到web开发.爬虫.数据分析.数据可视化.机器学习等.送给正在 ...

  8. CatBoost算法和调参

    欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?co ...

  9. Linux top、VIRT、RES、SHR、SWAP(S)、DATA Memory Parameters Detailed

    catalog . Linux TOP指令 . VIRT -- Virtual Image (KB) . RES -- Resident size (KB) . SHR -- Shared Memor ...

  10. Nlog日志组件简介

    NLog简介 NLog是一个简单灵活的.NET日志记录类库,NLog的API非常类似于log4net,配置方式非常简单.支持多种形式输出日志:文本文件.系统日志.数据库.控制台.邮箱等 1.NLog简 ...