Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)
2733: [HNOI2012]永无乡
Time Limit: 10 Sec Memory Limit: 128 MB
Description
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。
Input
输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n≤1000,q≤1000
对于 100%的数据 n≤100000,m≤n,q≤300000
Output
对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。
Sample Input
5 1
4 3 2 5 1
1 2
7
Q 3 2
Q 2 1
B 2 3
B 1 5
Q 2 1
Q 2 4
Q 2 3
Sample Output
-1
2
5
1
2
/*
线段树+启发式合并.
对于每个叶节点建立一棵权值线段树.
然后发现对于每个联通块的值域是一样的.
然后就可以合并辣.
貌似这题还可以搞splay+启发合并
复杂度是O(nlogn2).
期望重构次数是nlogn次,每一次重构需要更新一条链,复杂度是logn的,
所以总复杂度是nlogn2的.
如果用平衡树的话也是nlogn2的.
某度贴吧中说用Finger Search可以降一个log.
但是好像没找到这方面的资料orz.
*/
#include<iostream>
#include<cstdio>
#define MAXN 100001
using namespace std;
int n,m,q,tot,root[MAXN],a[MAXN],father[MAXN],size[MAXN],s[MAXN];
struct data{int lc,rc,size;}tree[MAXN*20];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
int find(int x)
{
return x!=father[x]?father[x]=find(father[x]):x;
}
void add(int &k,int l,int r,int x)
{
if(!k) k=++tot;
if(l==r){tree[k].size=1;return ;}
int mid=(l+r)>>1;
if(x<=mid) add(tree[k].lc,l,mid,x);
else add(tree[k].rc,mid+1,r,x);
tree[k].size=tree[tree[k].lc].size+tree[tree[k].rc].size;
return ;
}
int query(int k,int l,int r,int x)
{
if(l==r) return l;
int mid=(l+r)>>1;
if(tree[tree[k].lc].size>=x) return query(tree[k].lc,l,mid,x);
else return query(tree[k].rc,mid+1,r,x-tree[tree[k].lc].size);
}
int slove(int x,int y)
{
if(!x) return y;
if(!y) return x;
tree[x].lc=slove(tree[x].lc,tree[y].lc);
tree[x].rc=slove(tree[x].rc,tree[y].rc);
tree[x].size=tree[tree[x].lc].size+tree[tree[x].rc].size;
return x;
}
int main()
{
int x,y,k;char ch[3];
n=read(),m=read();
for(int i=1;i<=n;i++) a[i]=read(),father[i]=i,s[a[i]]=i;
for(int i=1;i<=m;i++)
{
x=read(),y=read();
int l1=find(x),l2=find(y);
father[l1]=l2;
}
for(int i=1;i<=n;i++)
{
int l1=find(i);
add(root[l1],1,n,a[i]);
}
q=read();
while(q--)
{
scanf("%s",ch);
if(ch[0]=='Q')
{
x=read(),k=read();
int l1=find(x);
if(tree[root[l1]].size<k) printf("-1\n");
else printf("%d\n",s[query(root[l1],1,n,k)]);
}
else
{
x=read(),y=read();
int l1=find(x),l2=find(y);
if(l1!=l2)
{
father[l2]=l1;
root[l1]=slove(root[l1],root[l2]);
}
}
}
return 0;
}
Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)的更多相关文章
- bzoj 2733: [HNOI2012]永无乡 -- 线段树
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...
- Bzoj 2733: [HNOI2012]永无乡 数组Splay+启发式合并
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3955 Solved: 2112[Submit][Statu ...
- bzoj 2733 : [HNOI2012]永无乡 (线段树合并)
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- BZOJ 2733 [HNOI2012]永无乡 ——线段树 并查集
用并查集维护联通块. 用线段树的合并来合并联通块. 自己YY了一个写法. #include <map> #include <cmath> #include <queue& ...
- 2733: [HNOI2012]永无乡 线段树合并
题目: https://www.lydsy.com/JudgeOnline/problem.php?id=2733 题解: 建n棵动态开点的权值线段树,然后边用并查集维护连通性,边合并线段树维护第k重 ...
- bzoj 2733: [HNOI2012]永无乡 离线+主席树
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1167 Solved: 607[Submit][Status ...
- BZOJ 2733: [HNOI2012]永无乡 [splay启发式合并]
2733: [HNOI2012]永无乡 题意:加边,询问一个连通块中k小值 终于写了一下splay启发式合并 本题直接splay上一个节点对应图上一个点就可以了 并查集维护连通性 合并的时候,把siz ...
- BZOJ 2733: [HNOI2012]永无乡 启发式合并treap
2733: [HNOI2012]永无乡 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)
不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...
随机推荐
- protobuf的使用(netty传输多种对象类型)
重点是: 1.枚举DataType的定义 2.oneof的使用
- Linux文件属性整理
Linux系统是一种典型的多用户系统,不同的用户处于不同的地位,拥有不同的权限.为了保护系统的安全性,Linux系统对不同的用户访问同一文件(包括目录文件)的权限做了不同的规定.在Linux中我们可以 ...
- 使用Android Studio遇到的问题
学校这课程安排没明白...又要写安卓了. 这里把使用Android Studio3.1时遇到的问题记录下. Android Studio无法启动模拟器 解决: 控制面板->程序->关闭Hy ...
- windows + Eclipse 汉化
https://www.eclipse.org/babel/downloads.php 下载Eclipse 对应版本 汉化包解压 复制文件夹里的内容到eclipse 文件夹下对应的文件里 重启ecli ...
- ASP.NET Core 2.1 中的 HttpClientFactory (Part 2) 定义命名化和类型化的客户端
原文:https://www.stevejgordon.co.uk/httpclientfactory-named-typed-clients-aspnetcore 发表于:2018年1月 上一篇文 ...
- springboot_2
1. 配置文件简介 spring boot使用一个全局配置文件:application.properties或者application.yml,放置在src/main/resources目录下或者类路 ...
- MyBatis 常用词汇含义
JDBC:java Data Base Connection(Java与数据库连接): ORM:Object Relational Mapping(对象关系映射,简称ORM,或者O/RM,或者O/M ...
- synchronize与lock
1. synchronize的作用 synchronize是java最原始的同步关键字,通过对方法或者代码块进行加锁实现对临界区域的保护.线程每次进去同步方法或者代码块都需要申请锁,如果锁被占用则会等 ...
- [#Linux] CentOS 7 安装微信详细过程
微信安装 微信安装过程如下: 1,下载最新版本tar.gz压缩包 wget https://github.com/geeeeeeeeek/electronic-wechat/releases/down ...
- Java中关于String类型的一些思考
作为初学者在学习Java的时候,变量类型是不可避免会遇到的,在以往我们的印象中字符串String都是作为基本类型而存在的,但是在Java中String类型确是一个实实在在的引用类型,是可以通过new关 ...