题面

\(\sum_{i=1}^{n}\sum_{j=1}^m\gcd(i,j)\mod998244353\)

\(n,m<=10^7\)

Sol

简单的一道莫比乌斯反演题

\(原式=\sum_{d=1}^{n}d*\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i, j)==1]\)

\(设f(i) = \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i, j)==1]\)

\(g(i) = \sum_{i|d} f(d) = \lfloor\frac{\lfloor\frac{n}{d}\rfloor}{i}\rfloor\lfloor\frac{\lfloor\frac{m}{d}\rfloor}{j}\rfloor\)

莫比乌斯反演求出f,用两个数论分块就好了

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1), MOD(998244353); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} int prime[_], mu[_], num, s[_];
bool isprime[_]; IL void Prepare(){
isprime[1] = 1; s[1] = mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, mu[i] = -1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{ mu[i * prime[j]] = 0; break; }
}
(mu[i] += mu[i - 1]) %= MOD; s[i] = (s[i - 1] + i) % MOD;
}
} IL int Calc(RG ll n, RG ll m){
RG ll f = 0, g;
for(RG ll i = 1, j; i <= n; i = j + 1){
j = min(n / (n / i), m / (m / i));
g = 1LL * (n / i) * (m / i) % MOD;
(f += 1LL * (mu[j] - mu[i - 1] + MOD) % MOD * g % MOD) %= MOD;
}
return f;
} int main(RG int argc, RG char *argv[]){
Prepare();
RG int n = Read(), m = Read(); RG ll ans = 0;
if(n > m) swap(n, m);
for(RG ll d = 1, j; d <= n; d = j + 1){
j = min(n / (n / d), m / (m / d));
(ans += 1LL * (s[j] - s[d - 1] + MOD) % MOD * Calc(n / d, m / d) % MOD) %= MOD;
}
printf("%lld\n", ans);
return 0;
}

【UVA 11426】gcd之和 (改编)的更多相关文章

  1. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

  2. UVA 11426 GCD - Extreme (II) (欧拉函数)题解

    思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...

  3. UVA 11426 GCD - Extreme (II) (数论|欧拉函数)

    题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...

  4. UVA 11426 GCD Extrme (Ⅲ)

    给定一个整数N(1<N<=4000000)的整数求∑GCD(i,j)i=1,2,3....j-1,2<=j<=n的值.参考了一下网上的题解,复述一下我理解后的思路,加深理解: ...

  5. UVa 11426 - GCD - Extreme (II)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  6. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  7. UVA 11426 GCD - Extreme (II) (欧拉函数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard ...

  8. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  9. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  10. UVa 11426 - GCD - Extreme (II) 转化+筛法生成欧拉函数表

    <训练指南>p.125 设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n); 则所求答案为S[n] = f[2]+f[3]+……+f[n] ...

随机推荐

  1. 数据库之mac上mysql root密码忘记或权限错误的解决办法

    [转自  http://blog.csdn.net/u014410695/article/details/50630233] 以下方法亲测有效,过程使用的工具只有mac的终端无需workbench 当 ...

  2. dedecms织梦判断当前页面是首页、栏目页还是文章页

    根据全局变量$GLOBALS['_sys_globals']['curfile']的值来判断. 首页parview:列表页listview:文章页archives 应用示例: {dede:php}if ...

  3. git使用步骤

    1报名出处: git config --global user.name lhp  用户名 git config --global user.email a@.qq.com 邮箱 2.建立项目文件夹: ...

  4. java-redis初探

    一.Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的 ...

  5. Elasticsearch-深入理解索引原理

    最近开始大面积使用ES,很多地方都是知其然不知其所以然,特地翻看了很多资料和大牛的文档,简单汇总一篇.内容多为摘抄,说是深入其实也是一点浅尝辄止的理解.希望大家领会精神. 首先学习要从官方开始地址如下 ...

  6. Docker安装weblogic

    Docker容器安装weblogic详细教程 前提:已经安装后Docker,并且能正常使用 (1)获取镜像:  docker pull ismaleiva90/weblogic12 docker pu ...

  7. Batch Normalization&Dropout浅析

    一. Batch Normalization 对于深度神经网络,训练起来有时很难拟合,可以使用更先进的优化算法,例如:SGD+momentum.RMSProp.Adam等算法.另一种策略则是高改变网络 ...

  8. Eventlog控件的使用

    CreateEventSource 已重载. 建立一个能够将事件信息写入到系统的特定日志中的应用程序. Delete 已重载. 移除日志资源. DeleteEventSource 已重载. 从事件日志 ...

  9. Python基础学习参考(四):条件与循环

    在实际的开发中,想要实现某些功能或者需求,里面必然涉及到一些逻辑,复杂的也好简单也好,那么,通过python语法如何实现呢?这就涉及到了条件与循环.很显然绝大多数的语言都有条件和循环的语法,pytho ...

  10. MySQL ODBC 3.51 Driver - Access Denied

    MySQL ODBC 3.51 Driver - Access Denied   同事反馈在应用服务器上配置MySQL ODBC 3.51 Drive时,测试连接MySQL数据库时报下面错误: ERR ...