poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)
Intersecting Lines
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12421 Accepted: 5548 Description
We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two
lines in the x-y plane and determine how and where the lines intersect.
All numbers required by this problem will be reasonable, say between
-1000 and 1000.Input
The
first line contains an integer N between 1 and 10 describing how many
pairs of lines are represented. The next N lines will each contain eight
integers. These integers represent the coordinates of four points on
the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines
represents two lines on the plane: the line through (x1,y1) and (x2,y2)
and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always
distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).Output
There
should be N+2 lines of output. The first line of output should read
INTERSECTING LINES OUTPUT. There will then be one line of output for
each pair of planar lines represented by a line of input, describing how
the lines intersect: none, line, or point. If the intersection is a
point then your program should output the x and y coordinates of the
point, correct to two decimal places. The final line of output should
read "END OF OUTPUT".Sample Input
5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5Sample Output
INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUTSource
题意:给定 1 - 10组直线,判断每组直线的关系,若相交 输出交点坐标,保留两位小数;若平行,输出‘NONE’;若重合,输出‘LINE’;
输出格式详见标准输出。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#include <set>
#define ll long long
using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
pair<Point,int> operator &(const Line &b)const
{
Point res = s;
if(sgn((s-e)^(b.s-b.e)) == )
{
if(sgn((b.s-s)^(b.e-s)) == )
return make_pair(res,);//两直线重合
else return make_pair(res,);//两直线平行
}
double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x += (e.x - s.x)*t;
res.y += (e.y - s.y)*t;
return make_pair(res,);//有交点
}
}; int main(void)
{
int t;
double x1,x2,x3,x4,y1,y2,y3,y4;
scanf("%d",&t);
printf("INTERSECTING LINES OUTPUT\n");
while(t--)
{
scanf("%lf %lf %lf %lf %lf %lf %lf %lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4);
Line l1 = Line( Point(x1,y1) ,Point(x2,y2) );
Line l2 = Line( Point(x3,y3) ,Point(x4,y4) );
pair<Point,int> ans = l1 & l2;
if(ans.second == ) printf("POINT %.2f %.2f\n",ans.first.x,ans.first.y);
else if(ans.second == ) printf("LINE\n");
else printf("NONE\n");
}
printf("END OF OUTPUT\n"); return ;
}
poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)的更多相关文章
- POJ 1269 Intersecting Lines 判断两直线关系
用的是初中学的方法 #include <iostream> #include <cstdio> #include <cstring> #include <al ...
- POJ 1269 Intersecting Lines (判断直线位置关系)
题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...
- POJ 1269 Intersecting Lines(判断两直线位置关系)
题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...
- POJ 1269 Intersecting Lines(几何)
题目链接 题意 : 给你两条线段的起点和终点,一共四个点,让你求交点坐标,如果这四个点是共线的,输出“LINE”,如果是平行的就输出“NONE”. 思路 : 照着ZN留下的模板果然好用,直接套上模板了 ...
- 判断两条直线的位置关系 POJ 1269 Intersecting Lines
两条直线可能有三种关系:1.共线 2.平行(不包括共线) 3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...
- POJ 1269 Intersecting Lines【判断直线相交】
题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0) ...
- POJ 1269 Intersecting Lines(直线相交判断,求交点)
Intersecting Lines Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8342 Accepted: 378 ...
- poj 1269 Intersecting Lines
题目链接:http://poj.org/problem?id=1269 题目大意:给出四个点的坐标x1,y1,x2,y2,x3,y3,x4,y4,前两个形成一条直线,后两个坐标形成一条直线.然后问你是 ...
- POJ 1269 - Intersecting Lines - [平面几何模板题]
题目链接:http://poj.org/problem?id=1269 Time Limit: 1000MS Memory Limit: 10000K Description We all know ...
随机推荐
- error in ./src/pages/login.vue?vue&type=style&index=0&lang=less&
vue-cli3创建less工程,npm run serve 无法运行 bug解决方法: rm -rf node-modules 修改package.json为 "less": & ...
- img属性src的特点
img属性src的特点: src=“图片地址” 成功则加载图片,失败则显示alt文字和断裂的图片 src="" 则不加载,不显示alt文字和断裂的图片 因此当图片加载失败后,$(& ...
- 2016.10.6初中部上午NOIP普及组比赛总结
2016.10.6初中部上午NOIP普及组比赛总结 中了病毒--病毒--病毒-- 进度: 比赛:AC+0+0+20=120 改题:AC+0+AC+20=220 Stairs 好--简--单!递推就过了 ...
- HashMap四种遍历方式
public static void main(String[] args){ Map<String,String> map = new HashMap<String, String ...
- 集合划分——cf1028D思维题
非常思维的一道题目,题意很长 给定s1,s2两个集合,s1维护最大值,s2维护最小值,s1的所有元素要比s2小 操作1:往两个集合里的任意一个添加x 操作2:把x从所在的集合里删掉:要求被删的x必须是 ...
- Thinkphp5 RCE总结
thinkphp5最出名的就是rce,我先总结rce,rce有两个大版本的分别 ThinkPHP 5.0-5.0.24 ThinkPHP 5.1.0-5.1.30 因为漏洞触发点和版本的不同,导致pa ...
- linux 每天一个命令
Nginx [emerg]: bind() to 0.0.0.0:80 failed (98: Address already in use) 使用命令关闭占用80端口的程序 sudo fuser ...
- System.Web.Mvc.FilePathResult.cs
ylbtech-System.Web.Mvc.FilePathResult.cs 1.程序集 System.Web.Mvc, Version=5.2.3.0, Culture=neutral, Pub ...
- react antd样式按需加载配置以及与css modules模块化的冲突问题
通过create-react-app脚手架生成一个项目 然后运行npm run eject 把webpack的一些配置从react-scripts模块弹射出来, 方便自己手工增减,暴露出来的配置文件在 ...
- java 调用区块链 发布和调用智能合约
java连接区块链 很简单 ,调用智能合约要麻烦一些. 先说连接 区块链查询数据. 1 maven 项目导入 web3j 的依赖. <dependency> <groupId> ...