import tempfile
import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output.tfrecords")
test_files = tf.train.match_filenames_once("E:\\output_test.tfrecords") # 解析一个TFRecord的方法。
def parser(record):
features = tf.parse_single_example(record,
features={
'image_raw':tf.FixedLenFeature([],tf.string),
'pixels':tf.FixedLenFeature([],tf.int64),
'label':tf.FixedLenFeature([],tf.int64)
})
decoded_images = tf.decode_raw(features['image_raw'],tf.uint8)
retyped_images = tf.cast(decoded_images, tf.float32)
images = tf.reshape(retyped_images, [784])
labels = tf.cast(features['label'],tf.int32)
#pixels = tf.cast(features['pixels'],tf.int32)
return images, labels image_size = 299 # 定义神经网络输入层图片的大小。
batch_size = 100 # 定义组合数据batch的大小。
shuffle_buffer = 10000 # 定义随机打乱数据时buffer的大小。 # 定义读取训练数据的数据集。
dataset = tf.data.TFRecordDataset(train_files)
dataset = dataset.map(parser) # 对数据进行shuffle和batching操作。这里省略了对图像做随机调整的预处理步骤。
dataset = dataset.shuffle(shuffle_buffer).batch(batch_size) # 重复NUM_EPOCHS个epoch。
NUM_EPOCHS = 10
dataset = dataset.repeat(NUM_EPOCHS) # 定义数据集迭代器。
iterator = dataset.make_initializable_iterator()
image_batch, label_batch = iterator.get_next() # 定义神经网络的结构以及优化过程。这里与7.3.4小节相同。
def inference(input_tensor, weights1, biases1, weights2, biases2):
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2 INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000 weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) y = inference(image_batch, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=label_batch)
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # 定义测试用的Dataset。
test_dataset = tf.data.TFRecordDataset(test_files)
test_dataset = test_dataset.map(parser)
test_dataset = test_dataset.batch(batch_size) # 定义测试数据上的迭代器。
test_iterator = test_dataset.make_initializable_iterator()
test_image_batch, test_label_batch = test_iterator.get_next() # 定义测试数据上的预测结果。
test_logit = inference(test_image_batch, weights1, biases1, weights2, biases2)
predictions = tf.argmax(test_logit, axis=-1, output_type=tf.int32) # 声明会话并运行神经网络的优化过程。
with tf.Session() as sess:
# 初始化变量。
sess.run((tf.global_variables_initializer(),tf.local_variables_initializer()))
# 初始化训练数据的迭代器。
sess.run(iterator.initializer)
# 循环进行训练,直到数据集完成输入、抛出OutOfRangeError错误。
while True:
try:
sess.run(train_step)
except tf.errors.OutOfRangeError:
break
test_results = []
test_labels = []
# 初始化测试数据的迭代器。
sess.run(test_iterator.initializer)
# 获取预测结果。
while True:
try:
pred, label = sess.run([predictions, test_label_batch])
test_results.extend(pred)
test_labels.extend(label)
except tf.errors.OutOfRangeError:
break # 计算准确率
correct = [float(y == y_) for (y, y_) in zip (test_results, test_labels)]
accuracy = sum(correct) / len(correct)
print("Test accuracy is:", accuracy)

吴裕雄 python 神经网络——TensorFlow 数据集高层操作的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 数据集基本使用方法

    import tempfile import tensorflow as tf input_data = [1, 2, 3, 5, 8] dataset = tf.data.Dataset.from_ ...

  2. 吴裕雄 python 神经网络——TensorFlow 多线程队列操作

    import tensorflow as tf queue = tf.FIFOQueue(100,"float") enqueue_op = queue.enqueue([tf.r ...

  3. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  4. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  5. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  6. 吴裕雄 python 神经网络——TensorFlow实现回归模型训练预测MNIST手写数据集

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  7. 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...

  8. 吴裕雄 python 神经网络——TensorFlow 实现LeNet-5模型处理MNIST手写数据集

    import os import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import ...

  9. 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集

    # 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...

随机推荐

  1. maven web报错:org.apache.jasper.JasperException: Unable to compile class for JSP

    原博文地址:https://blog.csdn.net/ken1583096683/article/details/80837281 maven web项目启动没问题,访问页面就报错:org.apac ...

  2. 寒假安卓app开发学习记录(6)

    今天把之前学过的内容复习了一遍,然后用了大概一个小时的时间看了看教学视频. 学到的主要内容是如何调试Android程序,以及Android的应用以及打包过程.   调试: 依次点击Run“-”Atta ...

  3. testng如何实现用例间依赖

    todo: 参考: https://www.cnblogs.com/znicy/p/6534893.html

  4. winform学习(2)窗体属性

    窗体也属于控件(controls) 主窗体:在Main函数中创建的窗体,当关闭主窗体时,整个程序也就关闭了. 如何打开控件属性面板: ①在该控件上单击鼠标右键--属性. ②选中该控件,按F4 窗体常用 ...

  5. python使用信号机制实例:

    python使用信号机制实例: 程序会一直等待,直到其他程序发送CTRL-C信号给本进程.需要其他程序配合测试. 或者打开新的终端使用kill -sig PID 向一个进程发送信号,来测试. from ...

  6. c++基础语法规则

    1,c++存储类:定义函数或者变量的生命周期     auto 关键字用于两种情况:声明变量时根据初始化表达式自动推断该变量的类型.声明函数时函数返回值的占位符. register 存储类用于定义存储 ...

  7. Java学习笔记(九)面向对象---模板方法设计模式

    理解 在定义功能时功能的一部分是确定的,但是有一部分是不确定的,而确定的部分在使用不确定的部分,那么就将不确定的部分暴露出去,由该类的子类完成. 举例 需求 获取一段程序的运行时间 代码 abstra ...

  8. HTML前端入门归纳——布局

    本人一直在从事.net的开发,界面都是采用的WPF,近期花了一个多月进行HTML前端的学习,在这里呢进行学习总结和归纳. 本系列将主要分为4个模块: 控件 样式 布局 JavaScript 根据多年W ...

  9. 10day 系统安全优化

    系统安全相关优化(将一些安全服务进行关闭) 1. 防火墙服务程序 centos6 查看防护墙服务状态 /etc/init.d/iptables status 临时关闭防火墙服务 /etc/init.d ...

  10. MySQL表的操作02

    [1]设置非空约束(NOT NULL ,NK)--->>>目的是f防止某些字段中的内容为空 CREATE TABLE +table_name ( 属性名   数据类型   NOT N ...