先考虑对题目进行转化,我们称两个区间有交集为这两个区间能匹配,每个询问就是在序列中最长能连续匹配的长度。

对序列中的一个区间\([l,r]\)和询问的一个区间\([L,R]\),若满足\(L \leqslant r\)且\(l \leqslant R\),那么这两个区间是能匹配的。

可以将一个区间用点来表示,然后用\(K-D\ Tree\)来维护所有的询问区间,序列区间按顺序一个个去更新每个询问的匹配信息即可。

对\(K-D\ Tree\)中的维护一个矩形来考虑,比如下图的蓝色矩形为这个矩形。

当一个点落在红色矩形时,那么该点和矩形内的所有点都能匹配,对该矩形打上加法标记,使矩形内所有点的当前匹配数加一。

当一个点落在黄色矩形时,那么该点和矩形内的所有点都不能匹配,对该矩形打上清零标记,使矩形内所有点的当前匹配数清零。

同时记录一个点在整个过程中的历史最大匹配数,其即为最终一个点所对应询问的答案。

对一个矩形清空后,还会进行一系列对其匹配数增加的操作,但此时打上加法标记是错误的,所以给它打上一个赋值标记,打标记时增加赋值标记即可,同时记录下这阶段赋值标记的历史最大值,并用其去更新该点的历史最大匹配数。

标记比较多,有很多细节,具体实现看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 400010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,root,tot,type;
int cov[maxn],his[maxn],add[maxn],tag[maxn];
int ans[maxn],ma[maxn],cnt[maxn];
struct node
{
int l,r;
}p[maxn];
struct KD_tree
{
int d[2],mi[2],ma[2],ls,rs,id;
}t[maxn],dat[maxn];
bool cmp(const KD_tree &a,const KD_tree &b)
{
return a.d[type]<b.d[type];
}
void pushup(int x)
{
int ls=t[x].ls,rs=t[x].rs;
for(int i=0;i<=1;++i)
{
t[x].ma[i]=t[x].mi[i]=t[x].d[i];
if(ls)
{
t[x].ma[i]=max(t[x].ma[i],t[ls].ma[i]);
t[x].mi[i]=min(t[x].mi[i],t[ls].mi[i]);
}
if(rs)
{
t[x].ma[i]=max(t[x].ma[i],t[rs].ma[i]);
t[x].mi[i]=min(t[x].mi[i],t[rs].mi[i]);
}
}
}
void update(int x,int v)
{
cnt[x]+=v,ma[x]=max(ma[x],cnt[x]);
}
void pushadd(int x,int v)
{
update(x,v);
if(cov[x]) tag[x]+=v,his[x]=max(his[x],tag[x]);
else add[x]+=v;
}
void pushcov(int x)
{
if(!cov[x]) cov[x]=1,his[x]=0;
cnt[x]=tag[x]=0;
}
void pushtag(int x,int v1,int v2)
{
cov[x]=1,his[x]=max(his[x],v2);
cnt[x]=tag[x]=v1,ma[x]=max(ma[x],his[x]);
}
void pushdown(int x)
{
int ls=t[x].ls,rs=t[x].rs;
if(add[x])
{
pushadd(ls,add[x]),pushadd(rs,add[x]);
add[x]=0;
}
if(cov[x])
{
pushtag(ls,tag[x],his[x]),pushtag(rs,tag[x],his[x]);
cov[x]=tag[x]=0;
}
}
void build(int l,int r,int k,int &x)
{
x=++tot,type=k;
int mid=(l+r)>>1;
nth_element(dat+l+1,dat+mid+1,dat+r+1,cmp);
t[x]=dat[mid];
if(l<mid) build(l,mid-1,k^1,t[x].ls);
if(r>mid) build(mid+1,r,k^1,t[x].rs);
pushup(x);
}
bool in(KD_tree tr,int l,int r)
{
return tr.ma[0]<=r&&l<=tr.mi[1];
}
bool out(KD_tree tr,int l,int r)
{
return tr.mi[0]>r||l>tr.ma[1];
}
void modify(int x,int l,int r)
{
int ls=t[x].ls,rs=t[x].rs;
if(in(t[x],l,r))
{
pushadd(x,1);
return;
}
if(out(t[x],l,r))
{
pushcov(x);
return;
}
pushdown(x);
if(t[x].d[0]<=r&&l<=t[x].d[1]) update(x,1);
else cnt[x]=0;
if(ls) modify(ls,l,r);
if(rs) modify(rs,l,r);
}
void dfs(int x)
{
int ls=t[x].ls,rs=t[x].rs;
pushdown(x),ans[t[x].id]=ma[x];
if(ls) dfs(ls);
if(rs) dfs(rs);
}
int main()
{
read(n),read(m);
for(int i=1;i<=n;++i) read(p[i].l),read(p[i].r);
for(int i=1;i<=m;++i)
read(dat[i].d[0]),read(dat[i].d[1]),dat[i].id=i;
build(1,m,0,root);
for(int i=1;i<=n;++i) modify(root,p[i].l,p[i].r);
dfs(root);
for(int i=1;i<=m;++i) printf("%d\n",ans[i]);
return 0;
}

题解 洛谷 P6349 【[PA2011]Kangaroos】的更多相关文章

  1. 洛谷 P6349 - [PA2011]Kangaroos(KDT+标记下放)

    洛谷题面传送门 KDT 上打标记的 hot tea. 考虑将询问 \(A,B\) 看作二维平面直角坐标系上的一个点 \((A,B)\),那么我们这样考虑,我们从左到右扫过全部 \(n\) 个区间并开一 ...

  2. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  5. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  6. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  7. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  8. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

随机推荐

  1. Axis WSDD文件参考文档

    本部分介绍的所有的WSDD元素的名称空间都是"http://xml.apache.org/axis/wsdd/". <deployment> 告诉Axis Engine ...

  2. java基础 内部类详解

    什么是内部类? 1.内部类也是一个类: 2.内部类位于其他类声明内部. 内部类的常见类型 1.成员内部类 2.局部内部类 3.匿名内部类 4.静态内部类 简单示例 /** * 外部类 * */ pub ...

  3. SQL注入之常用工具sqlmap

    通常来说,验证一个页面是否存在注入漏洞比较简单,而要获取数据,扩大权限,则要输入很复杂的SQL语句,有时候我们还会对大量的URL进行测试,这时就需要用到工具来帮助我们进行注入了. 目前流行的注入工具有 ...

  4. 【秒懂Java】【第1章_初识Java】01_编程语言

    各位小伙伴们好哇!从今日起,我将开始更新<秒懂Java>系列文章,从0开始讲解Java的方方面面,后面也将推出配套的视频版,欢迎大家保持关注! 我会尽力办到:在保证通俗易懂的同时,不丢失知 ...

  5. JDK8--02:为什么要使用lambda

    lambda是一个匿名函数,我们可以把lambda理解为一个可以传递的代码(将代码像数据一样传递),可以写出更简洁更灵活的代码.首先看一下原来的匿名内部类实现方式(以比较器为例) //原来的匿名内部类 ...

  6. vue全家桶(3.1)

    4.数据请求 4.1.axios是什么? axios 是一个基于Promise 用于浏览器和 nodejs 的 HTTP 客户端,它有以下特征: 从浏览器中创建 XMLHttpRequest 从 no ...

  7. DOM-BOM-EVENT(4)

    4.dom操作 createElement 创建一个元素 <button id="btn">点击</button> <ul id="ul1& ...

  8. HttPclient 以post方式发送json

    使用HttpClient 以POST的形式发送json字符串 步骤: 1.url .parameters 2.创建httpClient对象 3.创建HttpPost对象 4.为post对象设置参数 5 ...

  9. 数据库周刊28│开发者最喜爱的数据库是什么?阿里云脱口秀聊程序员转型;MySQL update误操作;PG流复制踩坑;PG异机归档;MySQL架构选型;Oracle技能表;Oracle文件损坏处理……

    热门资讯 1.Stackoverflow 2020年度报告出炉!开发者最喜爱的数据库是什么?[摘要]2020年2月,近6.5万名开发者参与了 Stackoverflow 的 2020 年度调查,这份报 ...

  10. Java项目开启远程调试(tomcat、springboot)

    当我们运行一个项目的时候,一般都是在本地进行debug.但是如果是一个分布式的微服务,这时候我们选择远程debug是我们开发的利器. 环境apache-tomcat-8.5.16 Linux 如何启用 ...