用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)
# -*- coding: utf-8 -*-
import numpy as np
np.random.seed(1337) from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import SimpleRNN,Activation,Dense
from keras.optimizers import Adam TIME_STEPS = 28 #图片的高
INPUT_SIZE = 28 #图片的行
BATCH_SIZE = 50 #每批训练多少图片
BATCH_INDEX = 0
OUTPUT_SIZE = 10
CELL_SIZE = 50
LR = 0.001 #下载mnist数据集
# X shape (60000,28*28) ,y shape (10000)
(X_train,y_train),(X_test,y_test) = mnist.load_data() # 数据预处理
X_train = X_train.reshape(-1,28,28)/255
X_test = X_test.reshape(-1,28,28)/255
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10) # 建模型
model = Sequential()
# RNN
model.add(SimpleRNN(
batch_input_shape=(None,TIME_STEPS,INPUT_SIZE),# 每次训练的量(None表示全部),图片大小
output_dim=CELL_SIZE,
))
# 输出层
model.add(Dense(OUTPUT_SIZE))
model.add(Activation('softmax')) # 优化器
adam = Adam(LR)
model.compile(optimizer=adam,
loss='categorical_crossentropy',
metrics=['accuracy']) # 训练
for step in range(4001):
X_batch=X_train[BATCH_INDEX:BATCH_SIZE+BATCH_INDEX,:,:]
Y_batch=y_train[BATCH_INDEX:BATCH_SIZE+BATCH_INDEX,:]
cost = model.train_on_batch(X_batch,Y_batch) BATCH_INDEX += BATCH_SIZE
BATCH_INDEX = 0 if BATCH_INDEX>=X_train.shape[0] else BATCH_INDEX if step % 500 == 0:
cost,accuracy = model.evaluate(X_test,y_test,batch_size=y_test.shape[0],verbose=False)
print('test cost: ',cost,'test accuracy: ',accuracy)
用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)的更多相关文章
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- 吴裕雄 python神经网络 手写数字图片识别(5)
import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...
- 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- 用Keras搭建神经网络 简单模版(二)——Classifier分类(手写数字识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...
- RNN探索(2)之手写数字识别
这篇博文不介绍基础的RNN理论知识,只是初步探索如何使用Tensorflow,之后会用笔推导RNN的公式和理论,现在时间紧迫所以先使用为主~~ import numpy as np import te ...
- 用tensorflow求手写数字的识别准确率 (简单版)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = in ...
- 卷积神经网络CNN 手写数字识别
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...
- 100天搞定机器学习|day39 Tensorflow Keras手写数字识别
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...
随机推荐
- Const *ptr ptr
1. const int *ptr = NULL; <=> int const *ptr = NULL; 1) 表示指向符号常量的指针变量,指针变量本身并非const所以可以指向其他变量. ...
- K8S漏洞报告 | 近期bug fix解读&1.13主要bug fix汇总
K8s近期漏洞详解 Kubernetes仪表盘漏洞(CVE-2018-18264) 因为这一漏洞,用户可以“跳过”登录过程获得仪表盘所使用的自定义TLS证书.如果您已将Kubernetes仪表盘配置为 ...
- react-router和react-router-dom的区别
RR4 本次采用单代码仓库模型架构(monorepo),这意味者这个仓库里面有若干相互独立的包,分别是: react-router React Router 核心 react-router-dom 用 ...
- springboot2.0入门(六)-- ymal语法、数据校验
一.基本使用 1.ymal语法是一种更符合人类命名习惯的语法: # 1. 一个家庭有爸爸.妈妈.孩子. # 2. 这个家庭有一个名字(family-name)叫做“happy family” # 3. ...
- python的logging日志模块(二)
晚上比较懒,直接搬砖了. 1.简单的将日志打印到屏幕 import logging logging.debug('This is debug message') logging.info('Thi ...
- HDU 6150 - Vertex Cover | 2017 中国大学生程序设计竞赛 - 网络选拔赛
思路来自 ICPCCamp /* HDU 6150 - Vertex Cover [ 构造 ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 题意: 给了你一个贪心法找最小覆盖的算法,构造一组 ...
- contos7上安装rabbitmq
#centeros7 安装erlang yum install erlang #启动扩展源 yum install epel-release #下载rabbitmq源文件 wget http://ww ...
- P2634 [国家集训队]聪聪可可 点分治
思路:点分治 提交:1次 题解: 不需要什么容斥...接着板子题说: 还是基本思路:对于一颗子树,与之前的子树做贡献. 我们把路径的权值在\(\%3\)意义下分类,即开三个桶\(c[0],c[1],c ...
- luogu 2331
给出 $n * 1$ 的矩阵,选出 $k$ 个互不重叠的子矩阵,使得其最大$sum[i]$ 为列的前缀和设 $f[i][j]$ 表示前 $i$ 个数选出 $j$ 个互不重叠的子矩阵的最大价值若第 $i ...
- LOJ #6669 Nauuo and Binary Tree (交互题、树链剖分)
题目链接 https://loj.ac/problem/6669 题解 Orz yyf太神了,出这种又有意思又有意义的好题造福人类-- 首先\(n\)次询问求出所有节点的深度. 考虑按深度扩展(BFS ...