传送门:https://loj.ac/problem/6043

【题解】

我们考虑这是个置换,所以一定形成了很多不相交的环。

对于每个环,我们只能选一段、不选、选一段、不选这样交替下去。

显然只有偶环是有解的,所以只考虑偶环。

每个偶环有2种方案(第一个选,第一个不选),直接枚举是O(2^(n/2))的,复杂度接受不了。

我们发现,2元环的左括号一定放在前面更优(更容易形成括号序列),所以贪心放,剩下的最小是4元环,枚举即可,所以复杂度是O(2^(n/4))。

写个dfs然后发现常数太大。。。(还是过了)

# include <vector>
# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm>
// # include <bits/stdc++.h> using namespace std; typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int M = + ;
const int mod = 1e9+; # define RG register
# define ST static int n, p[M], ans[M];
int h[M][M], hn[M], a[M], an;
int m; int head[M], nxt[M], to[M], tot = ;
inline void add(int u, int v) {
++tot; nxt[tot] = head[u]; head[u] = tot; to[tot] = v;
}
inline void adde(int u, int v) {
add(u, v), add(v, u);
} bool vis[M];
inline void dfs(int x, int fa) {
if(vis[x]) return ;
vis[x] = ;
a[++an] = x;
for (int i=head[x]; i; i=nxt[i])
if(to[i] != fa) dfs(to[i], x);
} inline void solve(int x) {
an = ;
dfs(x, );
if(an == ) {
if(a[] < a[]) ans[a[]] = ;
else ans[a[]] = ;
} else {
++m; hn[m] = an;
for (int i=; i<=an; ++i) h[m][i] = a[i];
}
} inline bool chk() {
int sum = ;
for (int i=; i<=n; ++i) {
sum = sum + (ans[i] ? : -);
if(sum < ) return false;
}
for (int i=; i<=n; ++i) putchar(ans[i] ? '(' : ')');
puts("");
return true;
} bool ok;
inline void gans(int x) {
if(ok) return ;
if(x == m + ) {
if (chk()) ok = ;
return ;
}
for (int i=; i<=hn[x]; ++i) ans[h[x][i]] = (i&);
gans(x+);
for (int i=; i<=hn[x]; ++i) ans[h[x][i]] ^= ;
gans(x+);
} int main() {
freopen("c.in", "r", stdin);
freopen("c.out", "w", stdout);
cin >> n;
for (int i=; i<=n; ++i) scanf("%d", &p[i]);
for (int i=; i<=n; ++i) adde(i, p[i]);
for (int i=; i<=n; ++i) if(!vis[i]) solve(i);
// for (int i=1; i<=m; ++i, puts("\n"))
// for (int j=1; j<=hn[i]; ++j)
// printf("%d ", h[i][j]);
gans();
return ;
}

loj6043 「雅礼集训 2017 Day7」蛐蛐国的修墙方案的更多相关文章

  1. 【LOJ6043】「雅礼集训 2017 Day7」蛐蛐国的修墙方案(搜索技巧题)

    点此看题面 大致题意: 给你一个长度为\(n\)的排列\(p\),要求构造一个合法的括号序列,使得如果第\(i\)个位置是左括号,则第\(p_i\)个位置一定是右括号. 暴搜 很容易想出一个暴搜. 即 ...

  2. LOJ #6043. 「雅礼集训 2017 Day7」蛐蛐国的修墙方案

    我可以大喊一声这就是个SB题吗? 首先讲一句如果你像神仙CXR一样精通搜索你就可以得到\(80pts\)(无Subtask)的好成绩 我们考虑挖掘一下题目的性质,首先发现这是一个置换,那么我们发现这的 ...

  3. 【复杂度分析】loj#6043. 「雅礼集训 2017 Day7」蛐蛐国的修墙方案

    感觉有点假 题目大意 数据范围:$n<=100$ 题目分析 由于题目给出的是 置换,所以相当于只需枚举每个环的两个状态. 主要是复杂度分析这里: 一元环:不存在 二元环:特判保平安 三元环:不存 ...

  4. loj 6043「雅礼集训 2017 Day7」蛐蛐国的修墙方案

    loj 爆搜? 爆搜! 先分析一下,因为我们给出的是一个排列,然后让\(i\)给\(p_i\)连边,那么我们一定会得到若干个环,最后要使得所有点度数为1,也就是这些环有完备匹配,那么最后一定全是偶环. ...

  5. 「雅礼集训 2017 Day7」事情的相似度

    「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...

  6. 「雅礼集训 2017 Day7」跳蚤王国的宰相(树的重心)

    题面 来源 「 雅 礼 集 训 2017 D a y 7 」 跳 蚤 王 国 的 宰 相   传 统 2000   m s 1024   M i B {\tt「雅礼集训 2017 Day7」跳蚤王国的 ...

  7. 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度

    Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...

  8. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  9. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

随机推荐

  1. Kubernetes集群(概念篇)

    Kubernetes介绍 2013年docker诞生,自此一发不可收拾,它的发展如火如荼,作为一个运维如果不会docker,那真的是落伍了. 而2014年出现的kubernetes(又叫k8s)更加炙 ...

  2. Python之tornado框架实现翻页功能

    1.结果如图所示,这里将html页面与网站的请求处理放在不同地方了 start.py代码 import tornado.ioloop import tornado.web from controlle ...

  3. Pro Git - 笔记3

    Git Branching Branches in a Nutshell Branches in a Nutshell let’s assume that you have a directory c ...

  4. shell 中的expect 用法

    expect一般用于实现用脚本来自动远程登录,对远程机器执行相关操作 测试机上的expect目录一般在/usr/bin/expect路径 下面是从网上查询的用法总结: 1. expect中的判断语句: ...

  5. uva 11526 H(n) (数论)

    转载自 http://blog.csdn.net/synapse7/article/details/12873437 这道题我自己做的时候没有想到好的优化方法,提交的时候借鉴这篇文章的内容,转载如下: ...

  6. 基于log4j的消息流的实现之一消息获取

    需求: 目前的程序中都是基于log4j来实现日志的管理,想要获取日志中的一部分消息,展示给用户. 约束: 由于程序中除了自己开发的代码,还会有层层依赖的第三方jar中的日志输出.需要展示给用户的消息, ...

  7. Sigar应用

    sigar是一个用于获取底层硬件信息比如:CPU,内存,硬盘,网络等等信息的库.其官网如下: https://support.hyperic.com/display/SIGAR/Home   出于项目 ...

  8. Linux设置快捷命令

    vi ~/.bashrc 在.bashrc目录中,添加 alias 设置 例如 cdtools='cd ~/GIT/tools' 对于一条比较长的命令,如显示系统运行时长 cat /proc/upti ...

  9. CSS clear both清除浮动总结

    我们知道有时候使用了CSS float浮动,会产生CSS浮动,这个时候就需要清理浮动,我们就用clear样式属性即可实现. 接下来我们来认识与学习CSS clear知识与用法. clear清除浮动目录 ...

  10. DataBase -- FUNCTION

    SQL拥有很多课用于计数和计算的内建函数. SELECT function(列) FROM 表 合计函数(Aggregate Functions) Aggregate函数的操作面向一系列的值,并返回一 ...