UVALive 6449 IQ Test --高斯消元?
题意:给你一串数字,问这串数字符合f[n] = a*f[n-1],f[n] = a*f[n-1]+b*f[n-2],f[n] = a*f[n-1]+b*f[n-2]+c*f[n-3]这几个方程中的哪个,然后要你给出第n+1项,如果符合多个方程,项数小的优先(第一个方程优先)。
解法:这题我先处理看是否满足f[n] = a*f[n-1]的形式,如果不满足,则用高斯消元借出两项和三项的情况的a,b,c,比如第二个方程,f[3] = a*f[2]+b*f[1],f[4] = a*f[3]+b*f[2],两个方程两个未知量,用高斯消元解出a,b,这里可能不是整数,我将他们加了个0.5取下整,居然对了。后来看那场比赛没一个人是用的高斯消元,所以不知道这样是否正确,有看出来端倪的欢迎评论告诉我。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 4 int f[];
typedef double Matrix[N][N];
int x,y,z; void gauss_elimination(Matrix A,int n)
{
int i,j,k,r;
for(i=;i<n;i++)
{
//选一行r并与i行交换
r = i;
for(j=i+;j<n;j++)
if(fabs(A[j][i]) > fabs(A[r][i]))
r = j;
if(r != i)
{
for(j=;j<=n;j++)
swap(A[r][j],A[i][j]);
}
//与第i+1~n行进行消元
for(k=i+;k<n;k++)
{
double f = A[k][i]/A[i][i]; //为了让A[k][i] = 0,第i行乘以的倍数
for(j=i;j<=n;j++)
A[k][j] -= f*A[i][j];
}
}
//回代
for(i=n-;i>=;i--)
{
for(j=i+;j<n;j++)
A[i][n] -= A[j][n]*A[i][j];
A[i][n] /= A[i][i];
}
x = (int)floor(A[][n]+0.5);
y = (int)floor(A[][n]+0.5);
if(n == )
z = (int)floor(A[][n]+0.5);
} int main()
{
int t,n,i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
memset(f,,sizeof(f));
for(i=;i<=n;i++)
scanf("%d",&f[i]);
int ans = Mod;
int a1,a2,a3;
int flag;
if((f[] == && f[] == ) || f[]%f[] == )
{
if(f[] == && f[] == )
a1 = ;
else
a1 = f[]/f[];
flag = ;
for(i=;i<=n;i++)
{
if(f[i] != a1*f[i-])
flag = ;
}
if(flag)
ans = a1*f[n];
}
if(ans != Mod)
{
printf("%d\n",ans);
continue;
}
Matrix A;
A[][] = A[][] = f[];
A[][] = f[];
A[][] = f[];
A[][] = f[];
A[][] = f[];
gauss_elimination(A,);
flag = ;
for(i=;i<=n;i++)
{
if(f[i] != x*f[i-]+y*f[i-])
flag = ;
}
if(flag)
ans = x*f[n]+y*f[n-];
if(ans != Mod)
{
printf("%d\n",ans);
continue;
}
A[][] = A[][] = A[][] = f[];
A[][] = A[][] = f[];
A[][] = f[];
A[][] = A[][] = f[];
A[][] = f[];
A[][] = f[];
A[][] = f[];
A[][] = f[];
gauss_elimination(A,);
//printf("%d %d %d\n",x,y,z);
ans = x*f[n]+y*f[n-]+z*f[n-];
if(ans != Mod)
printf("%d\n",ans);
}
return ;
}
UVALive 6449 IQ Test --高斯消元?的更多相关文章
- First Knight UVALive - 4297(优化高斯消元解概率dp)
题意: 一个矩形区域被分成 m*n 个单元编号为 (1, 1)至 (m, n),左上为 (1, 1),右下为(m, n).给出P(k)i,j,其中 1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
- UVALive 7455 Linear Ecosystem (高斯消元)
Linear Ecosystem 题目链接: http://acm.hust.edu.cn/vjudge/contest/127401#problem/B Description http://7xj ...
- UVALive - 6185 Find the Outlier暴力填表+高斯消元+卡eps
https://cn.vjudge.net/problem/UVALive-6185 我真的是服了orz eps 1e5,1e6过不了 开1e2 1e1都能过 题意:给你一个d阶多项式f的f(0),f ...
- UVALive - 3490 Generator (AC自动机+高斯消元dp)
初始有一个空串s,从前n个大写字母中不断随机取出一个字母添加到s的结尾,出现模式串t时停止,求停止时s的长度期望. 这道题解法不唯一,比较无脑的方法是对模式串t建一个单串AC自动机,设u为自动机上的一 ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- 【BZOJ-3270】博物馆 高斯消元 + 概率期望
3270: 博物馆 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 292 Solved: 158[Submit][Status][Discuss] ...
- *POJ 1222 高斯消元
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9612 Accepted: 62 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
随机推荐
- java注释指导手册
译文出处: Toien Liu 原文出处:Dani Buiza 编者的话:注解是java的一个主要特性且每个java开发者都应该知道如何使用它. 我们已经在Java Code Geeks提供了丰富 ...
- SQL数据库基础(四)
聚合函数:sum,avg,max,min,count 使用方法示例: group by 分组的使用方法 分组的练习: 数学函数:ABS.ceiling.floor.power.round.sqrt. ...
- ArcEngine环境下合并断开的线要素(根据属性)
1.遇到的问题: 最近遇到在线要素(矢量数据)中,一条完整的道路.河流等往往是断开的,如下图1所示: 2.思路: 在ArcGIS Desktop中没有相关的工具可以将这些断开的线要素进行自动合并,今天 ...
- Atitit.木马 病毒 免杀 技术 360免杀 杀毒软件免杀 原理与原则 attilax 总结
Atitit.木马 病毒 免杀 技术 360免杀 杀毒软件免杀 原理与原则 attilax 总结 1. ,免杀技术的用途2 1.1. 病毒木马的编写2 1.2. 软件保护所用的加密产品(比如壳)中,有 ...
- Setting up your App domain for SharePoint 2013
from:http://sharepointchick.com/archive/2012/07/29/setting-up-your-app-domain-for-sharepoint-2013.as ...
- Android——五大布局
Android的五大布局分为: 线性布局 相对布局 帧布局 绝对布局 表格布局 一.线性布局 线性布局在开发中使用最多,具有垂直方向与水平方向的布局方式 通过设置属性"android:ori ...
- Python基础(3)--列表和元组
Python包含6种内建序列:列表.元组.字符串.Unicode字符串.buffer对象.xrange对象 本篇主要讨论最常用的两种类型:列表.元组 本文地址:http://www.cnblogs.c ...
- 深入理解Activity -动手写实例来感受Activity的启动模式
介绍 上篇提到了Activity的任务,任务栈,以及启动模式.对这些概念有了了解以后,自己写一下例子来感受一下,就当作复习和加深印象了.如果对概念不熟悉的可以参考:深入理解Activity-任务,回退 ...
- Swift开发第五篇——四个知识点(Struct Mutable方法&Tuple&autoclosure&Optional Chain)
本篇分三部分: 一.Struct Mutable方法 二.多元组(Tuple) 的使用 三.autoclosure 的使用 四.Optional Chain 的使用 一.Struct Mutable方 ...
- iOS UIWebView和网页的交互(OC中调执行JS)
UIWebView和网页的交互(OC中调执行JS)- (void)viewDidLoad{[super viewDidLoad];// 1.webViewUIWebView *webView = [[ ...