K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

对于聚类问题,我们事先并不知道给定的一个训练数据集到底具有哪些类别(即没有指定类标签),而是根据需要设置指定个数类标签的数量(但不知道具体的类标
签是什么),然后通过K-means算法将具有相同特征,或者基于一定规则认为某一些对象相似,与其它一些组明显的不同的数据聚集到一起,自然形成分组。
之后,我们可以根据每一组的数据的特点,给定一个合适的类标签(当然,可能给出类标签对实际应用没有实际意义,例如可能我们就想看一下聚类得到的各个数据
集的相似性)。

首先说明一个概念:质心(Centroid)。质心可以认为就是一个样本点,或者可以认为是数据集中的一个数据点P,它是具有相似性的一组数据的中心,即该组中每个数据点到P的距离都比到其他质心的距离近(与其他质心相似性比较低)。

k个初始类聚类质心(Centroid)的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的质心,初始地代表一个聚类结果,当然这个结果一般情况不是合理的,只是随便地将数据集进行了一次随机的划分,具体进行修正这个质心还需要进行多轮的计算,来一步步逼近我们期望的聚类结果:具有相似性的对象聚集到一个组中,它们都具有共同的一个质心。

另外,因为初始质心选择的随机性,可能未必使最终的结果达到我们的期望,所以我们可以多次迭代,每次迭代都重新随机得到初始质心,直到最终的聚类结果能够满足我们的期望为止。

下面,我们描述一下K-means算法的过程:

  1. 首先输入k的值,即我们希望将数据集D = {P1, P2, …, Pn}经过聚类得到k个分类(分组)。
  2. 从数据集D中随机选择k个数据点作为质心,质心集合定义为:Centroid = {Cp1, Cp2, …, Cpk},排除质心以后数据集O={O1, O2, …, Om}。
  3. 对集合O中每一个数据点Oi,计算Oi与Cpj(j=1, 2, …,k)的距离,得到一组距离Si={si1, si2, …, sik},计算Si中距离最小值,则该该数据点Oi就属于该最小距离值对应的质心。
  4. 每个数据点Oi都已经属于其中一个质心,然后根据每个质心所包含的数据点的集合,重新计算得到一个新的质心。
  5. 如果新计算的质心和原来的质心之间的距离达到某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),可以认为我们进行的聚类已经达到期望的结果,算法终止。
  6. 如果新质心和原来之心距离变化很大,需要迭代2~5步骤。

下面,根据参考链接,我们给出一个表达K-means聚类过程的图,描述了k=2时聚类的过程,更加直观一些,如图所示:



上图表示的聚类过程,简述如下:

  1. 给定一个数据集,包含多个数据点;
  2. 随机选择两个质心;
  3. 计算数据集中数据点分别属于哪一个质心所在的组中,将数据集中所有数据点聚成2个组;
  4. 根据上一步计算得到的2组数据点,分别重新计算出一个新的质心;
  5. 重复步骤3,再进行一次聚类过程,得到2组数据点;
  6. 再次计算新的质心,该次计算得到的质心与上一次计算得到的质心的距离变化很小(满足指定阈值,或收敛),则结果符合期望,停止聚类过程。

K-means算法的优点

  • 算法框架清晰,简单,容易理解。
  • 本算法确定的k个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。
  • 对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K<<N,t<<N 。

K-means算法的缺点

    • K-means算法中k是事先给定的,这个k值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。这也是K-means算法的一个不足。有的算法是通过类的自动合并和分裂,得到较为合理的类型数目k,例如ISODATA算法。关于K-means算法中聚类数目k值的确定,有些文献中,是根据方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分熵来验证最佳分类数的正确性,它使用了一种结合全协方差矩阵的RPCL算法,并逐步删除那些只包含少量训练数据的类,这是一种称为次胜者受罚的竞争学习规则,来自动决定类的适当数目。它的思想是:对每个输入而言,不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。
    • 在K-means算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好,可能无法得到有效的聚类结果,这也成为K-means算法的一个主要问题。对于该问题的解决,许多算法采用遗传算法(GA),以内部聚类准则作为评价指标。
    • 从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销
      是非常大的。所以需要对算法的时间复杂度进行分析、改进,提高算法应用范围,例如,可以从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚
      类中心的侯选集。在有些文献中,使用的K-means算法是对样本数据进行聚类,无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取
      的样本数据的基础之上,这样可以提高算法的收敛速度。
    • K-means算法对异常数据很敏感。在计算质心的过程中,如果某个数据很异常,在计算均值的时候,会对结果影响非常大

参考链接

本文基于署名-非商业性使用-相同方式共享 4.0许可协议发布,欢迎转载、使用、重新发布,但务必保留文章署名时延军(包含链接:http://shiyanjun.cn),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系

聚类算法:K-means的更多相关文章

  1. ML: 聚类算法-K均值聚类

    基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...

  2. 聚类算法:K均值、凝聚层次聚类和DBSCAN

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

  3. 常见聚类算法——K均值、凝聚层次聚类和DBSCAN比较

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

  4. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  5. 【机器学习】聚类算法——K均值算法(k-means)

    一.聚类 1.基于划分的聚类:k-means.k-medoids(每个类别找一个样本来代表).Clarans 2.基于层次的聚类:(1)自底向上的凝聚方法,比如Agnes (2)自上而下的分裂方法,比 ...

  6. 数据挖掘十大算法--K-均值聚类算法

    一.相异度计算  在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...

  7. 第十三篇:K-Means 聚类算法原理分析与代码实现

    前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...

  8. 机器学习六--K-means聚类算法

    机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...

  9. k-means均值聚类算法(转)

    4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在 ...

  10. K-means聚类算法(转)

    K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是 ...

随机推荐

  1. String类型的属性和方法

    × 目录 [1]属性 [2]对象通用方法 [3]访问字符方法[4]字符串拼接[5]创建子串方法[6]大小写转换[7]查找子串位置[8]正则匹配方法[9]去除首尾空格[10]字符串比较 前面的话 前面已 ...

  2. UTF-8和GBK等中文字符编码格式介绍及相互转换

    我们有很多时候需要使用中文编码格式,比如gbk.gb2312等,但是因为主要针对中文编码设置,因此并不完全通用,这样一来就有了在各编码间相互转换的需求,比如和UTF8的转换.可是在我使用的过程中,却发 ...

  3. Struts2 - Conversion Plugin

    转载:http://www.cnblogs.com/ikuman/archive/2013/11/04/3403073.html 1.struts2自2.1以后推荐使用Convention Plugi ...

  4. Linux 如何通过命令仅获取IP地址

    一同事的朋友正在参加笔试,遇到这么一个问题让他帮忙解决,结果同事又找到我帮他搞定.真是感慨:通讯发达在某些方面来说,真不知是不是好事啊!题目大致如下所示,一般我们使用ifconfig查看网卡信息,请问 ...

  5. Linux AVG ANTIVIRUS FREE使用介绍

    杀毒软件AVG,没有用过估计也有所耳闻.AVG ANTIVIRUS FREE - FOR LINUX 是AVG在Linux下的一款免费杀毒软件.它的官方下载地址供了rpm.deb.源码安装包等多种安装 ...

  6. 使用SignalR实现消息提醒

    Asp.net SignalR是微软为实现实时通信的一个类库.一般情况下,SignalR会使用JavaScript的长轮询(long polling)的方式来实现客户端和服务器通信,随着Html5中W ...

  7. spring 4.x下让http请求返回json串

    当前很多应用已经开始将响应返回为json串,所以基于springframework框架开发的服务端程序,让响应返回json字符串成为了一种常用手段. 这里介绍一下如何在spring-MVC框架下方便快 ...

  8. 业务监控-指标监控(v1)

    最近做了指标监控系统的后台,包括需求调研.代码coding.调试调优测试等,穿插其他杂事等前后花了一个月左右. 指标监控指的是用户通过接口上传某些指标信息,并且通过配置阈值公式和告警规则等信息监测自己 ...

  9. centos 进度条卡死

    CentOS 6.7 系统 在执行完删除更新包的全部操作之后, yum remove -y Deployment_Guide-en-US finger cups-libs cups ypbind &a ...

  10. shell实现ping命令查看哪些主机在线

    #!/bin/bash .{..};do -i 0.5 $a >/dev/null && echo "$a 在线" || echo "$a 离线&q ...