本文综合了几个相关的维基百科,加了点自己的理解,从比较基础的向量投影和叉积讲起,推导出罗德里格斯旋转公式。公式比较繁杂,如有错误,欢迎评论区指出。

  对于向量的三维旋转问题,给定旋转轴和旋转角度,用罗德里格斯(Rodrigues)旋转公式可以得出旋转后的向量。另外,罗德里格斯旋转公式可以用旋转矩阵表示,即将三维旋转的轴-角(axis-angle)表示转变为旋转矩阵表示。

向量投影(Vector projection)

  向量a在非零向量b上的向量投影指的是a在平行于向量b的直线上的正交投影。结果是一个平行于b的向量,定义为\(\mathbf{a}_1=a_1\hat{\mathbf{b}}\),其中,\(a_1\)是一个标量,称为ab上的标量投影,\(\hat{\mathbf{b}}\)是与b同向的单位向量。\(a_1=\left\Vert\mathbf{a}\right\Vert\cos\theta=\mathbf{a}\cdot \hat{\mathbf{b}}=\mathbf{a}\cdot\frac{\mathbf{b}}{\left\Vert\mathbf{b}\right\Vert}\),其中\(\cdot\)表示点积,\(\left\Vert\mathbf{a}\right\Vert\)表示a的长度,\(\theta\)表示ab的夹角。标量投影有正负,正负号与夹角\(\theta\)有关。

  有了向量投影\(\textbf{a}_1\),向量a可以表示为\(\mathbf{a}=\mathbf{a}_1+\mathbf{a}_2\),其中\(\mathbf{a}_2\)称为a from b的vector rejection(没找到比较官方的翻译),也即a向正交于b的超平面的正交投影,\(\mathbf{a}_2=\mathbf{a}-\mathbf{a}_1=\mathbf{a}-(\left\Vert\mathbf{a}\right\Vert\cos\theta)\hat{\mathbf{b}}\)。下图比较清晰地表示出\(\mathbf{a}\)、\(\mathbf{a}_1\)、\(\mathbf{a}_2\)的关系。

图1 Projection of a on b(a1), rejection of a from b(a2)

  当\(90^{\circ}<\theta\le180^{\circ}\)时,向量投影示意图如图2所示:

图2 大于90°时的向量投影示意图,此时a1b的方向相反

记号

  向量ab上的向量投影用加粗的\(\mathbf{a}_1\)表示,标量投影用不加粗的\(a_1\)。有时向量投影和vector rejection分别用\(\mathbf{a}_{\parallel\mathbf{b}}\)和\(\mathbf{a}_{\perp\mathbf{b}}\)表示。

ab表示

  当\(\theta\)未知时,可通过ab计算得出,\(\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{\left\Vert\mathbf{a}\right\Vert\left\Vert\mathbf{b}\right\Vert}\),从而标量投影、向量投影和vector rejection可以分别表示如下:

  • 标量投影:

    \begin{equation}
    a_1=\left\Vert\mathbf{a}\right\Vert\cos\theta=\left\Vert\mathbf{a}\right\Vert\frac{\mathbf{a}\cdot\mathbf{b}}{\left\Vert\mathbf{a}\right\Vert\left\Vert\mathbf{b}\right\Vert}=\frac{\mathbf{a}\cdot\mathbf{b}}{\left\Vert\mathbf{b}\right\Vert}
    \end{equation}

  • 向量投影:

    \begin{equation}
    \mathbf{a}_1=a_1\hat{\mathbf{b}}=\frac{\mathbf{a}\cdot\mathbf{b}}{\left\Vert\mathbf{b}\right\Vert}\frac{\mathbf{b}}{\left\Vert\mathbf{b}\right\Vert}=\left(\mathbf{a}\cdot\hat{\mathbf{b}}\right)\hat{\mathbf{b}}=\frac{\mathbf{a}\cdot\mathbf{b}}{\mathbf{b}\cdot\mathbf{b}}\mathbf{b}
    \end{equation}

  • vector rejection:

    \begin{equation}
    \mathbf{a}_2=\mathbf{a}-\mathbf{a}_1=\mathbf{a}-\frac{\mathbf{a}\cdot\mathbf{b}}{\mathbf{b}\cdot\mathbf{b}}\mathbf{b}
    \end{equation}

叉积

定义

  叉积(又称向量积)是三维空间(\(\mathbb{R}^3\))向量的二元操作,用符号\(\times\)表示,给定两个线性独立的向量ab,叉积\(\mathbf{a}\times\mathbf{b}\)的结果是一个向量,这个向量与ab都正交,也就是正交于ab所在的平面。为什么要强调线性独立呢,因为非线性独立的两个向量(同向或反向)的叉积为\(\mathbf{0}\)。

  叉积定义为:

\begin{equation}
\mathbf{a}\times\mathbf{b}=\left\Vert\mathbf{a}\right\Vert\left\Vert\mathbf{b}\right\Vert\sin(\theta)\mathbf{n}
\end{equation}

其中,\(\theta\)表示ab的夹角,\(0^\circ\le\theta\le180^\circ\),\(\mathbf{n}\)正交于ab所在的平面,方向通常由右手法则确定,如下图所示: 

图3 通过右手法则确定叉积方向

性质

  右手法则决定了叉积不符合交换律,而符合反交换律,即\(\mathbf{a}\times\mathbf{b}=-\mathbf{b}\times\mathbf{a}\),如图4所示:

图4 反交换律

  由公式也可以看出当ab的不线性独立时,即夹角为\(0^\circ\)或\(180^\circ\)时,叉积为零向量\(\mathbf{0}\)。叉积随夹角\(\theta\)的变化如图5所示。

图5 叉积随夹角变化示意图

  另外,叉积符合分配律,即\(\mathbf{a}\times(\mathbf{b}+\mathbf{c})=\mathbf{a}\times\mathbf{b}+\mathbf{a}\times\mathbf{c}\)。如图6所示,左图向量bc都被分解为vector projection和vector rejection两部分,右图则解释了分配律成立的原因,看图时要注意图中的平行四边形和正方形都表示了相等的关系。

图6 叉积分配律示意图

坐标表示

  考虑右手法则定义的标准三维坐标系,三个坐标轴\(\mathbf{i}\)、\(\mathbf{j}\)、\(\mathbf{{k}}\)如图7所示,并满足以下等式关系:
\[
\mathbf{i}\times\mathbf{j}=\mathbf{k}\\
\mathbf{j}\times\mathbf{k}=\mathbf{i}\\
\mathbf{k}\times\mathbf{i}=\mathbf{j}
\]
同样,由叉积的反交换律可得下面三个等式关系:
\[
\mathbf{j}\times\mathbf{i}=-\mathbf{k}\\
\mathbf{k}\times\mathbf{j}=-\mathbf{i}\\
\mathbf{i}\times\mathbf{k}=-\mathbf{j}
\]
由平行向量的叉积为零向量可得:\(\mathbf{i}\times\mathbf{i}=\mathbf{j}\times\mathbf{j}=\mathbf{k}\times\mathbf{k}=\mathbf{0}\)。
  由图7也可得,任意一个三维向量都可以表示为三个基向量的线性组合,例如:
\[
\mathbf{a}=a_1\mathbf{i}+a_2\mathbf{j}+a_3\mathbf{k}\\
\mathbf{b}=b_1\mathbf{i}+b_2\mathbf{j}+b_2\mathbf{k}
\]

图7 三维坐标系基向量与向量a的表示

  进而,可以用坐标表示叉积运算如下:

\begin{equation}
\begin{split}
\mathbf{a}\times\mathbf{b}&=(a_1\mathbf{i}+a_2\mathbf{j}+a_3\mathbf{k})\times(b_1\mathbf{i}+b_2\mathbf{j}+b_2\mathbf{k})\\
&=(a_2b_3-a_3b_2)\mathbf{i}+(a_3b_1-a_1b_3)\mathbf{j}+(a_1b_2-a_2b_1)\mathbf{k}\\
&=\left|\begin{array}{cccc}
i & j & k \\
a_1 & a_2 & a_3\\
b_1 & b_2 & b_3
\end{array}\right|
\end{split}
\end{equation}

上式中,将括号展开分别进行叉积推导出第二个等号,而第三个等号则可通过行列式计算得出。
  进一步,可将叉积表示为矩阵与向量相乘的形式,由于\(\mathbf{a}\times\mathbf{b}=(a_2b_3-a_3b_2, a_3b_1-a_1b_3,a_1b_2-a_2b_1)\),则叉积可表示为:

\begin{equation}
\begin{split}
\mathbf{a}\times\mathbf{b}=\left[\mathbf{a}\right]_\times\mathbf{b}=\left[\begin{array}{cccc}
0 & -a_3 & a_2\\
a_3 & 0 & -a_1\\
-a_2 & a_1 & 0
\end{array}
\right]\left[
\begin{array}{cc}
b_1\\b_2\\b_3
\end{array}\right]=\left[\mathbf{b}\right]^T_\times\mathbf{a}=\left[\begin{array}{cccc}
0 & b_3 & -b_2\\
-b_3 & 0 & b_1\\
b_2 & -b_1 & 0
\end{array}
\right]\left[
\begin{array}{cc}
a_1\\a_2\\a_3
\end{array}\right]
\end{split}
\end{equation}

其中,\(\left[\mathbf{a}\right]_\times\)(slam14讲书上记为\(\mathbf{a}^\wedge\))表示由向量\(\mathbf{a}\)得到的反对称矩阵,定义为:

\begin{equation}
\begin{split}
\left[\mathbf{a}\right]_\times=\left[\begin{array}{cccc}
0 & -a_3 & a_2\\
a_3 & 0 & -a_1\\
-a_2 & a_1 & 0
\end{array}
\right]
\end{split}
\end{equation}

通过该反对称矩阵的定义可以将叉积表示为矩阵与向量的乘法。

罗德里格斯旋转公式

  考虑\(\mathbf{v}\in\mathbb{R}^3\)的三维旋转问题,旋转轴\(\mathbf{k}\)是单位向量,旋转角为\(\theta\),按照右手法则(即逆时针)旋转。则可通过罗德里格斯旋转公式得出旋转后的向量\(\mathbf{v}_{rot}\)为:

\begin{equation}
\mathbf{v}_{rot}=\cos\theta\mathbf{v}+(1-\cos\theta)(\mathbf{k}\cdot\mathbf{v})\mathbf{k}+\sin\theta\mathbf{k}\times\mathbf{v}
\end{equation}

推导过程

  由上文中向量投影部分的知识我们知道,一个向量\(\mathbf{v}\)可以分解为平行于\(\mathbf{k}\)的分量\(\mathbf{v}_\parallel\)和正交于\(\mathbf{k}\)的分量\(\mathbf{v}_{\perp}\):

\begin{equation}
\mathbf{v}=\mathbf{v}_{\parallel}+\mathbf{v}_\perp
\end{equation}

图8 向量的分解图示

如图8所示,因为\(\mathbf{k}\)为单位向量,由向量投影部分知识可得

\begin{equation}
\mathbf{v}_\parallel=(\mathbf{v}\cdot\mathbf{k})\mathbf{k}
\end{equation}

\begin{equation}
\mathbf{v}_\perp=\mathbf{v}-\mathbf{v}_\parallel=\mathbf{v}-(\mathbf{k}\cdot\mathbf{v})\mathbf{k}=-\mathbf{k}\times(\mathbf{k}\times\mathbf{v})
\end{equation}

关于上式最后一个等号的推导如下:

  回顾叉积的知识,\(\mathbf{k}\times\mathbf{v}=\mathbf{k}\times(\mathbf{v}_{\parallel}+\mathbf{v}_\perp)=\mathbf{0}+\mathbf{k}\times\mathbf{v}_\perp=\mathbf{k}\times\mathbf{v}_\perp\),\(\mathbf{k}\times\mathbf{v}\)可以看做将\(\mathbf{v}_\perp\)以\(\mathbf{k}\)为旋转轴逆时针旋转了\(90^\circ\)。正如图9所示,\(\mathbf{v}\)分解为\(\mathbf{v}_\parallel\)和\(\mathbf{v}_\perp\),用右手法则不难确定出\(\mathbf{k}\times\mathbf{v}\)的方向,进而不难发现,\(\mathbf{k}\times(\mathbf{k}\times\mathbf{v})\)可以看做将\(\mathbf{v}_\perp\)以\(\mathbf{k}\)为旋转轴逆时针旋转了\(180^\circ\),图9中的(椭)圆正反映了\(\mathbf{k}\times(\mathbf{k}\times\mathbf{v})\)、\(\mathbf{k}\times\mathbf{v}\)、\(\mathbf{v}_\perp\)三者“大小相等”的关系。最终,可知\(\mathbf{v}_\perp=-\mathbf{k}\times(\mathbf{k}\times\mathbf{v})\)。
  

图9 罗德里格斯旋转公式几何图示

  从图8还可以看出,v的平行分量\(\mathbf{v}_\parallel\)不会因为旋转而改变,旋转后的向量\(\mathbf{v}_{rot}\)的平行分量依然等于\(\mathbf{v}_\parallel\),即\(\mathbf{v}_{\parallel rot}=\mathbf{v}_\parallel\)。
  而v的正交分量\(\mathbf{v}_\perp\)在旋转过程中大小不变,方向会发生变化,即

\begin{equation}
\begin{split}
&|\mathbf{v}_{\perp rot}|=|\mathbf{v}_\perp|\\
&\mathbf{v}_{\perp rot}=\cos\theta\mathbf{v}_\perp+\sin\theta\mathbf{k}\times\mathbf{v}_\perp=\cos\theta\mathbf{v}_\perp+\sin\theta\mathbf{k}\times\mathbf{v}
\end{split}
\end{equation}

上述第2个等式通过图9可以得出,将圆看做\(xOy\)坐标系平面,\(\mathbf{v}_\perp\)所在的直线看做\(x\)轴,\(\mathbf{k}\times\mathbf{v}\)所在的直线看做\(y\)轴,结合三角函数,很容易用\(\mathbf{v}_\perp\)和\(\mathbf{k}\times\mathbf{v}\)表示出\(\mathbf{v}_\perp\)。

  到这已经得出罗德里格斯公式了:

\begin{equation}
\begin{split}
\mathbf{v}_{rot}&=\mathbf{v}_{\parallel rot}+\mathbf{v}_{\perp rot}\\
&=\mathbf{v}_\parallel+\cos\theta\mathbf{v}_\perp+\sin\theta\mathbf{k}\times\mathbf{v}\\
&=\mathbf{v}_\parallel+\cos\theta(\mathbf{v}-\mathbf{v}_\parallel)+\sin\theta\mathbf{k}\times\mathbf{v}\\
&=\cos\theta\mathbf{v}+(1-\cos\theta)\mathbf{v}_\parallel+\sin\theta\mathbf{k}\times\mathbf{v}\\
&=\cos\theta\mathbf{v}+(1-\cos\theta)(\mathbf{k}\cdot\mathbf{v})\mathbf{k}+\sin\theta\mathbf{k}\times\mathbf{v}
\end{split}
\end{equation}

矩阵形式

  在叉积部分提到过叉积可以表示为矩阵乘向量的形式,类似地,罗德里格斯旋转公式可以表示为旋转矩阵乘以向量的形式,\(\mathbf{v}_{rot}=\mathbf{R}\mathbf{v}\),其中\(\mathbf{R}\)是旋转矩阵。在slam14讲\(^{[4]}\)中的表示如下:
\begin{equation}
\mathbf{R}=\cos\theta\mathbf{I}+(1-\cos\theta)\mathbf{k}\mathbf{k}^T+\sin\theta\mathbf{k}^\wedge
\end{equation}
其中,\(\mathbf{I}\)表示单位矩阵,\(\mathbf{k}\)表示旋转向量(书中用\(\mathbf{n}\)表示旋转向量),\(\mathbf{k}^\wedge\)表示由\(\mathbf{k}\)得到的反对称矩阵。从式(13)不难看出上式,另外,结合式(13)还可以得到下面这个式子:

\begin{equation}
\begin{split}
\mathbf{v}_{rot}&=\mathbf{v}_{\parallel rot}+\mathbf{v}_{\perp rot}\\
&=\mathbf{v}_\parallel+\cos\theta\mathbf{v}_\perp+\sin\theta\mathbf{k}\times\mathbf{v}\\
&=\mathbf{v}-\mathbf{v}_\perp+\cos\theta\mathbf{v}_\perp+\sin\theta\mathbf{k}\times\mathbf{v}\\
&=\mathbf{v}+(\sin\theta)\mathbf{k}\times\mathbf{v}+(1-\cos\theta)\mathbf{k}\times\mathbf{k}\times\mathbf{v}
\end{split}
\end{equation}

从而,得出这个维基百科上的矩阵表示:

\begin{equation}
\begin{split}
\mathbf{v}_{rot}=\mathbf{R}\mathbf{v}=\mathbf{v}+(\sin\theta)\mathbf{K}\mathbf{v}+(1-\cos\theta)\mathbf{K}^2\mathbf{v}
\end{split}
\end{equation}

其中,\(\mathbf{R}=\mathbf{I}+(\sin\theta)\mathbf{K}+(1-\cos\theta)\mathbf{K}^2\),\(\mathbf{K}\)表示由旋转向量\(\mathbf{k}\)生成的反对称矩阵。

参考:

[1] Rodrigues' rotation formula
[2] Cross product
[3] Vector projection
[4] 视觉SLAM十四讲:从理论到实践

罗德里格斯旋转公式(Rodrigues' rotation formula)推导的更多相关文章

  1. c++ 知道旋转前后矩阵向量值 求旋转矩阵c++/c#代码 知道两个向量求他们的旋转矩阵

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12115244.html 知道旋转前后矩阵向量值 如何去求旋转矩阵R 的c++/c#代码??? ...

  2. 【多视图几何】TUM 课程 第2章 刚体运动

    课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4 .视频评论区可以找到课 ...

  3. 回顾Games101图形学(一)几何变换中一些公式的推导

    回顾Games101 chatper1 - 6 前言 本文只写回顾后重新加深认识的知识 透视除法的意义 经过MVP矩阵之后,将模型空间下某点的坐标,转换成了裁剪空间下的坐标,此时因为裁剪空间的范围是x ...

  4. 【Notes_3】现代图形学入门——基础变换、MVP变换模型

    基础变换(二维) 三维变化与二维变换矩阵类似 齐次坐标下的基础变换 Scale: \[S(s_x,s_y) =\begin{pmatrix} s_x &0 &0\\ 0 & s ...

  5. 【Notes】现代图形学入门_01

    跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...

  6. UR机械臂运动学正逆解方法

    最近几个月因为工作接触到了机械臂的项目,突然对机械臂运动方法产生了兴趣,也就是如何控制机械臂的位置和姿态.借用一张网上的图片,应该是ur5的尺寸.我用到的是ur3机械臂,除了尺寸不一样,各关节结构和初 ...

  7. 【视觉SLAM14讲】ch3课后题答案

    1.验证旋转矩阵是正交矩阵 感觉下面这篇博客写的不错 http://www.cnblogs.com/caster99/p/4703033.html 总结一下:旋转矩阵是一个完美的矩阵——正交矩阵.①行 ...

  8. CS184.1X 计算机图形学导论(第三讲)

    第一单元(介绍关于变换的数学知识) :基本二维变换 模型坐标系,世界坐标系 1.缩放 Scale(规模,比例) Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘 ...

  9. 旋转矩阵(Rotation Matrix)的推导及其应用

    向量的平移,比较简单. 缩放也较为简单 矩阵如何进行计算呢?之前的文章中有简介一种方法,把行旋转一下,然后与右侧对应相乘.在谷歌图片搜索旋转矩阵时,看到这张动图,觉得表述的很清晰了. 稍微复杂一点的是 ...

随机推荐

  1. 低副瓣阵列天线综合1 matlab HFSS

    车载雷达天线多采用微带贴片天线,贴片振子的形状多种多样,较常用的是矩形: 组阵时多采用先串馈再把串馈好的行或列单元采取并馈的方式组阵,无论是串馈或并馈,想要获得较低的副瓣效果,都需要采取电流幅度加权的 ...

  2. unittest模块使用方法

    unittest模块常用属性 1. unittest.TestCase类:所有的测试用例类继承的基类 定义一个测试用例类,需要继承TestCase,比如: class BaiduTest(unitte ...

  3. Nginx模块讲解

    Nginx模块分为:nginx官方模块.第三方模块 通过nginx -V查看编译参数,可以看到官方编译的模块 --with-compat --with-file-aio --with-threads ...

  4. Mysql的binlog日志与mysqlbinlog命令

    binlog相关 MySQL 的二进制日志 binlog 可以说是 MySQL 最重要的日志,它记录了所有的 DDL 和 DML 语句(除了数据查询语句select.show等),以事件形式记录,还包 ...

  5. Django 信号量

    参考:https://www.cnblogs.com/wupeiqi/articles/5246483.html 一.信号:就是一些动作发生的时候,信号允许特定的发送者去提醒一些接受者         ...

  6. 「 从0到1学习微服务SpringCloud 」05服务消费者Fegin

    系列文章(更新ing): 「 从0到1学习微服务SpringCloud 」01 一起来学呀! 「 从0到1学习微服务SpringCloud 」02 Eureka服务注册与发现 「 从0到1学习微服务S ...

  7. GP工作室——系统设计

    团队作业第二次--系统设计 问题 答案 这个作业属于哪个课程 软件工程 这个作业要求在哪里 作业要求 团队名称 GP工作室 这个作业的目标 对项目软件进行更为详细的系统性设计 按照本游戏的设计要求,我 ...

  8. makefile自动依赖生成

    自动依赖生成 基于make的构建环境要正确工作, 一个很重要(也很烦人)的任务是, 在makefile中正确列 举依赖. 这个文档将介绍了一个非常有用的让make自身来创建和维护这些依赖的方法. 文章 ...

  9. requests快速构造请求头的方法

    上图请求头内容,内容多不说,也不确认哪些数据是必须的,网上找到一个懒办法 快速一键生成 Python 爬虫请求头 实战演练 抓取网站:https://developer.mozilla.org... ...

  10. 单独立使用Django ORM

    一.常用的ORM框架简介 在Python下的ORM库不少,同样介绍类似的博文也不少,但是是我非常规的用法,顺便做做笔记.这里参考Python 常用的ORM框架简介文章列出几个, 这个几个我都使用过,但 ...