一个不错的题解 : http://blog.csdn.net/accry/article/details/6607703

这是一道状态压缩。每个点有一个值,我们最后要求一个最值sum。sum由三部分组成:①每个点的值②每个点与他相邻的点的乘积③如果存在三个点成环,还要加上这三个点的值的乘积。

状态转移方程为:dp[i][j][k]=max(dp[i,j,k],dp[i'][k][l]+temp) j表示当前点,k表示上一个点,l表示上上一个点。

其中i,i'表示可以走到i点的状态,temp表示这个状态过来需要加的值,它等于value[j]+value[j]*value[k](如果j,k,l成环还要+value[j]*value[k]*value[l]).

当i状态表示只由两个点构成时,dp[i][j][k]=value[j]+value[j]*value[k].

但是此题不止要求最大值,还有求最大值的个数。于是我们开一个way数组,way[i][j][k]表示i状态由当前点i和上一个点k所有个方案数。于是如果dp[i][j][k]=dp[i'][k][l]+temp是way[i][j][k]+=way[i'][k][l],如果是dp[i][j][k]<dp[i'][k][l]+temp时way[i][j][k]=way[i'][k][l].

本来是这样,但是我很蛋疼得想如果在dp的同时去更新最大值和最大个数。于是就导致1个小时不断的wa,不断找反例,不断改,终于过了orz……。

如果要按我那么做,就是不断更新最大值,那么就一定要在第二个循环内……以及一些奇奇怪怪的限制,只能说这是一个神奇的经历,不断读程序理解思想……(其实是因为没有数据)说明我以前太依赖现有数据去调程序了……

var

  dp,way:array[..mm,..,..]of int64;

  f:array[..]of int64;

  map:array[..,..]of boolean;

  j,k,l,n,m,i,state,p,temp,top:longint;

  ans1,ans2:int64;

begin

  readln(p);

  while p<> do begin

    dec(p);

    read(n,m);

    fillchar(f,sizeof(f),);

    for i:= to n do read(f[i]);

    if n= then begin

      writeln(f[],'');

      continue;

    end;

    readln;

    fillchar(map,sizeof(map),false);

    fillchar(way,sizeof(way),);

    fillchar(dp,sizeof(dp),);

    for i:= to m do begin

      read(j,k);

      map[j,k]:=true;

      map[k,j]:=true;

    end;

    top:=<<n-;

    ans1:=-;

    ans2:=;

    for i:= to top do

      for j:= to n do

        if (i and ( << (j-) )<>) then

          for k:= to n do

            if (j<>k) and ((i and ( << (k-) ))<>) and (map[j,k]) then begin

              if i=(<<(j-))+(<<(k-)) then begin

                dp[i,j,k]:=f[j]+f[k]+f[j]*f[k];

                way[i,j,k]:=;

              end

                else begin

                  for l:= to n do

                    if (j<>l) and (l<>k) and (i and ( << (l-))<>)and map[k,l] then begin

                      state:=i-(<<(j-));

                      if dp[state,k,l]=- then continue;

                      temp:=f[j]*f[k]+f[j]+dp[state,k,l];

                      if map[j,l] then inc(temp,f[j]*f[k]*f[l]);

                      if dp[i,j,k]>temp then continue;

                      if dp[i,j,k]=temp then

                        inc(way[i,j,k],way[state,k,l]);

                      if dp[i,j,k]<temp then begin

                        dp[i,j,k]:=temp;

                        way[i,j,k]:=way[state,k,l];

                      end;

                    end;

                end;

              if (i=top) then begin

                    if ans1=dp[i,j,k] then

                      ans2:=ans2+way[i,j,k]

                    else

                      if ans1<dp[i,j,k] then begin

                        ans1:=dp[i,j,k];

                        ans2:=way[i,j,k];

                      end;

                  end;

              end;

   if ans1=- then writeln('0 0')

   else writeln(ans1,' ',ans2 div );

  end;

end.

【以前的空间】poj 2288 Islands and Bridges的更多相关文章

  1. POJ 2288 Islands and Bridges(状压dp)

    http://poj.org/problem?id=2288 题意: 有n个岛屿,每个岛屿有一个权值V,一条哈密顿路径C1,C2,...Cn的值为3部分之和: 第1部分,将路径中每个岛屿的权值累加起来 ...

  2. poj 2288 Islands and Bridges ——状压DP

    题目:http://poj.org/problem?id=2288 状压挺明显的: 一开始写了(记忆化)搜索,但一直T: #include<iostream> #include<cs ...

  3. poj 2288 Islands and Bridges——状压dp(哈密尔顿回路)

    题目:http://poj.org/problem?id=2288 不知为什么记忆化搜索就是WA得不得了! #include<iostream> #include<cstdio> ...

  4. poj 2288 Islands and Bridges

    题意: 给你一个双向连通图,求 获得权值最大 的 哈密顿通路的 权值 和 这个权值对应的数目: 其中权值计算方法是  列如 ABCD  权值是a+b+c+d+ab+bc+cd 如果 A,B,C  和B ...

  5. POJ 2288 Islands and Bridges (状压DP,变形)

    题意: 给一个无向图,n个点m条边,每个点有点权,要求找到一条哈密顿路径,使得该路径的f(path)值最大.输出f值,若有多条最大f值的路径,输出路径数量. f值由如下3点累加而来: (1)所有点权之 ...

  6. poj 2288 Islands and Bridges (状压dp+Tsp问题)

    这道题千辛万苦啊! 这道题要涉及到当前点和前面两个点,那就设dp[state][i][j]为当前状态为state,当前点为i,前一个点为j 这个状态表示和之前做炮兵那题很像,就是涉及到三个点时,就多设 ...

  7. POJ 2288 Islands and Bridges(状压DP)题解

    题意:n个点,m有向边,w[i]表示i的价值,求价值最大的哈密顿图(只经过所有点一次).价值为:所有点的w之和,加上,每条边的价值 = w[i] * w[j],加上,如果连续的三个点相互连接的价值 = ...

  8. poj 2288 Islands and Bridges_状态压缩dp_哈密尔顿回路问题

    题目链接 题目描述:哈密尔顿路问题.n个点,每一个点有权值,设哈密尔顿路为 C1C2...Cn,Ci的权值为Vi,一条哈密尔顿路的值分为三部分计算: 1.每一个点的权值之和 2.对于图中的每一条CiC ...

  9. poj 2280 Islands and Bridges 哈密尔顿路 状压dp

    题目链接 题意 给定一个\(N\)个点的无向图,求一条哈密尔顿路径\(C_1C_2...C_n\),使其\(value\)最大. \(value\)的计算方式如下:\[\begin{aligned}v ...

随机推荐

  1. VINS(五)非线性优化与在线标定调整

    首先根据最大后验估计(Maximum a posteriori estimation,MAP)构建非线性优化的目标函数. 初始化过程通过线性求解直接会给出一个状态的初值,而非线性优化的过程关键在于求解 ...

  2. autocomplete.jquery 点击或进入默认显示所有结果

    注意使用的是autocomplete.jquery,官网地址是:https://github.com/devbridge/jQuery-Autocomplete.而不是JqueryUI的autocom ...

  3. 获取ip地址以及获取城市等信息

    class Program { static void Main(string[] args) { string ip = GetIP(); if (ip != null) { string city ...

  4. 【Random】-随机数字-jmeter

    参数化 Random 参数化,存储结果的变量名,名字写了,就可以给其它请求使用

  5. ionic 组件学习

    利用css列表多选框: <div class="{{Conceal}}" > <ion-checkbox color="secondary" ...

  6. 解析范式(1NF-4NF)

    亲爱的盆友们~又是新的一年,你,准备好新的学习计划了吗~?是读书100本,还是考上5个证?嘛~不管怎么说,角落里那一堆蒙尘的计划表好像在昭示着这仍然是一个充满朝气又艰难的9102年呢!总之,先把#技本 ...

  7. Intro to Probabilistic Model

    概率论复习 概率(Probability) 频率学派(Frequentist):由大量试验得到的期望频率(致命缺陷:有些事情无法大量试验,例如一封邮件是垃圾邮件的概率,雷达探测的物体是一枚导弹的概率) ...

  8. ArrayList与LinkedList的普通for循环遍历

    对于大部分Java程序员朋友们来说,可能平时使用得最多的List就是ArrayList,对于ArrayList的遍历,一般用如下写法: public static void main(String[] ...

  9. 【Machine Learning】如何处理机器学习中的非均衡数据集?

    在机器学习中,我们常常会遇到不均衡的数据集.比如癌症数据集中,癌症样本的数量可能远少于非癌症样本的数量:在银行的信用数据集中,按期还款的客户数量可能远大于违约客户的样本数量.   比如非常有名的德国信 ...

  10. 转战Java~

    记得16年5月份开始学的Java,当时就是为了学Hadoop才学的Java基础,之后Hadoop没学成,倒是学了Java Web的东西,当时就是玩玩,然后弄了个WeChat后台,就完事了.然后就又回到 ...