1025D

题意:

  有一个递增序列,问能不能构建出一颗每条边的端点值都不互质的二叉排序树。

思路:

  区间DP,但是和常见的区间DP不一样,

  这里dp【i】【j】表示的是区间【i,j】能否以i为根建立一个小二叉排序树。

  所以可以得到dp【i】【j】 为true, 要求在【i+1,j】中有一个k,dp【k】【i+1】和dp【k】【j】都为true。

  或者在i点的左边取件中,即要求在【j】【i-1】中有一个k,dp【k】【j】和dp【k】【i-1】都为true。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFFLL; //
const ll nmos = 0x80000000LL; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3fLL; //
const int mod = ; const double PI=acos(-1.0); // #define _DEBUG; //*//
#ifdef _DEBUG
freopen("input", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
/*-----------------------showtime----------------------*/
const int maxn = ;
ll a[maxn],mp[maxn][maxn],dp[maxn][maxn];
ll gcd(ll a,ll b){
if(b==)return a;
return gcd(b,a%b);
} int main(){
int n;
scanf("%d", &n);
for(int i=; i<=n; i++){
scanf("%I64d", &a[i]);
} for(int i=; i<=n; i++){
for(int j=; j<=n; j++)
{
if(i==j)dp[i][j] = ;
mp[i][j] = (gcd(a[i],a[j]) == ?:);
}
} for(int len = ; len <= n; len++){
for(int i=; i<=n; i++){
int le = i - len;
if(le >= ){
for(int k = le ; k < i; k++){
if(dp[k][le] && dp[k][i-] && mp[k][i]){
dp[i][le] = ;
break;
}
}
} int ri = i + len;
if(ri <= n){
for(int k = i+; k <= ri ; k++){
if(dp[k][i+] && dp[k][ri] && mp[i][k]){
dp[i][ri] = ;
break;
}
}
}
}
} for(int i=; i<=n; i++){
if(dp[i][] && dp[i][n]){
puts("Yes");
return ;
}
}
puts("No");
return ;
}

CF1025D

codeforce #505D - Recovering BST 区间DP的更多相关文章

  1. CodeForces - 1025D: Recovering BST (区间DP)

    Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...

  2. CF D. Recovering BST (区间DP)

    题意:给你n个节点,每个节点有一个权值,两个点可以连边当且仅当这两个点的gcd>1,问你这n个点能否构成一个二叉搜索树(每个节点最多有两个儿子,且左儿子小于右儿子),输入为递增顺序. 分析: 若 ...

  3. codeforce 149D Coloring Brackets 区间DP

    题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...

  4. [cf1025D][区间dp]

    http://codeforces.com/contest/1025/problem/D D. Recovering BST time limit per test 1 second memory l ...

  5. Codeforces 1025 D - Recovering BST

    D - Recovering BST 思路:区间dp dp[l][r][0]表示l到r之间的数字可以构成一个二叉搜索树,并且以r+1为根节点 dp[l][r][0]表示l到r之间的数字可以构成一个二叉 ...

  6. CF 1025 D. Recovering BST

    D. Recovering BST http://codeforces.com/contest/1025/problem/D 题意: 给出一个连续上升的序列a,两个点之间有边满足gcd(ai ,aj) ...

  7. uva 10304 - Optimal Binary Search Tree 区间dp

    题目链接 给n个数, 这n个数的值是从小到大的, 给出个n个数的出现次数. 然后用他们组成一个bst.访问每一个数的代价是这个点的深度*这个点访问的次数. 问你代价最小值是多少. 区间dp的时候, 如 ...

  8. CF1025D Recovering BST

    题意:给定序列,问能否将其构成一颗BST,使得所有gcd(x, fa[x]) > 1 解:看起来是区间DP但是普通的f[l][r]表示不了根,f[l][r][root]又是n4的会超时,怎么办? ...

  9. 区间dp——cf1025D二叉搜索树的中序遍历好题!

    这题帮我复习了一下BST的中序遍历.. 因为给定的数组是递增的,那么BST的中序遍历一定是1 2 3 4 5 6 7 8 9 ... n 即[l,r]为左子树,那么根节点就是r+1,反之根节点就是l- ...

随机推荐

  1. centos6.5-7编译安装Ansible详细部署

    一.基础介绍==========================================================================================ansi ...

  2. RocketMQ中Broker的启动源码分析(一)

    在RocketMQ中,使用BrokerStartup作为启动类,相较于NameServer的启动,Broker作为RocketMQ的核心可复杂得多 [RocketMQ中NameServer的启动源码分 ...

  3. word 文档导出 (freemaker+jacob)--java开发

    工作中终于遇到了 需要导出word文旦的需求了.由于以前没有操作过,所以就先百度下了,基本上是:博客园,简书,CDSN,这几大机构的相关帖子比较多,然后花了2周时间 才初步弄懂.  学习顺序: 第一阶 ...

  4. Android 属性动画实战

    什么是属性动画? 属性动画可以通过直接更改 View 的属性来实现 View 动画.例如: 通过不断的更改 View 的坐标来实现让 View 移动的效果: 通过不断的更改 View 的背景来实现让 ...

  5. hashCode和equals的区别

    关注公众号,大家可以在公众号后台回复“博客园”,免费获得作者 Java 知识体系/面试必看资料. 有面试官会问:你重写过 hashcode 和 equals 么,为什么重写equals时必须重写has ...

  6. 利用jQuery中的serialize方法大量获取页面中表单的数据,发送的服务器

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  7. SpringBoot 集成Jedis操作set

    题外话: Redis是个有趣的东西,相信搞java的或多或少都会用到,面试时也总离不开问Redis,之前觉得redis只是用做缓存,飞快!也因为最初在封装底层的时候,使用Redisson,所以大部分都 ...

  8. C++实现多组数据合并输出

    思路 假设有多组数据,每一组都是按从小到大的顺序输入的,设计如下数据结构 前面一列是每一组数据的首部,后面是真正的数据,首部的定义为: struct head { Node* next; head* ...

  9. 存在于文件名中的SQL手工注入

    SQL注入已经在前一章为大家介绍了个大概,本文将讲述我遇到的本以为是文件上传漏洞,却是以文件名触发的SQL注入! 本文分享的内容同样来自于一道CTF题! 1. 直接进入正题 (1) 初步探测 先看一下 ...

  10. Tomcat源码分析 (六)----- Tomcat 启动过程(一)

    说到Tomcat的启动,我们都知道,我们每次需要运行tomcat/bin/startup.sh这个脚本,而这个脚本的内容到底是什么呢?我们来看看. 启动脚本 startup.sh 脚本 #!/bin/ ...