一、背景

与卡曼滤波不同的是,粒子滤波假设隐变量之间(隐变量与观测变量之间)是非线性的,并且不满足高斯分布,可以是任意的关系。

求解的还是和卡曼滤波一样,但由于分布不明确,所以需要用采样的方法求解。

二、重要性采样(importance sampling & SIS)

重要性采样(IS)需要计算p(zt|x1,...,t), t与t-1之间没有递推关系,不易求解

为此引入SIS,转换成求解p(z1,...t|x1,...t),且能够推出递推关系,方便求解

三、重采样Basic Particle Filter

但SIS也有一个严重问题,权重会随着时间增长呈指数递减。

为此引入Basic particle filter = SIS + Resampling(权重大的,多采样)

四、SIR Filter

SIR filter与basic particle filter区别在于,选择q(zt|z1,...,zt-1,x1,...,xt) = p(zt|zt-1)

SIR filter = SIS + resampling + q(z)

机器学习理论基础学习14.2---线性动态系统-粒子滤波 particle filter的更多相关文章

  1. 机器学习理论基础学习14.1---线性动态系统-卡曼滤波 Kalman filter

    一.背景 动态模型 = 图 + 时间 动态模型有三种:HMM.线性动态系统(kalman filter).particle filter 线性动态系统与HMM的区别是假设相邻隐变量之间满足线性高斯分布 ...

  2. 机器学习理论基础学习12---MCMC

    作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多复杂算法求解的基础.比如分 ...

  3. 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)

    在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...

  4. 机器学习理论基础学习3.1--- Linear classification 线性分类之感知机PLA(Percetron Learning Algorithm)

    一.感知机(Perception) 1.1 原理: 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,感知机学习的目标 ...

  5. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

  6. 机器学习理论基础学习3.4--- Linear classification 线性分类之Gaussian Discriminant Analysis高斯判别模型

    一.什么是高斯判别模型? 二.怎么求解参数?

  7. 机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯

    一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设    条件独立性假设:假设在给定label y的条件下,特征之间是独立的    最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑 ...

  8. 机器学习理论基础学习4--- SVM(基于结构风险最小化)

    一.什么是SVM? SVM(Support Vector Machine)又称为支持向量机,是一种二分类的模型.当然如果进行修改之后也是可以用于多类别问题的分类.支持向量机可以分为线性和非线性两大类. ...

  9. 机器学习理论基础学习5--- PCA

    一.预备知识 减少过拟合的方法有:(1)增加数据 (2)正则化(3)降维 维度灾难:从几何角度看会导致数据的稀疏性 举例1:正方形中有一个内切圆,当维度D趋近于无穷大时,圆内的数据几乎为0,所有的数据 ...

随机推荐

  1. 如何区分slice、splice和split

    小颖之前写过一篇文章:JavaScript Array 对象方法 以及 如何区分javascript中的toString().toLocaleString().valueOf()方法中有分享过slic ...

  2. nginx 日志文件

    默认日志格式 log_format access '$remote_addr - $remote_user [$time_local] "$request" ' '$status ...

  3. 【黑金原创教程】【FPGA那些事儿-驱动篇I 】实验七:PS/2模块① — 键盘

    实验七:PS/2模块① — 键盘 实验七依然也是熟烂的PS/2键盘.相较<建模篇>的PS/2键盘实验,实验七实除了实现基本的驱动以外,我们还要深入解PS/2时序,还有PS/2键盘的行为.不 ...

  4. Linux系统java环境jdk的安装

    在linux环境中jdk的安装有两种方式,一为rpm安装机制,另一种为源码安装(已编译好)因此在ORACLE官网提供两种安装文件,一为rpm格式,另一种为gz格式,两种的安装方式都大同小异的. 1.r ...

  5. 【CF633H】Fibonacci-ish II 莫队+线段树

    [CF633H]Fibonacci-ish II 题意:给你一个长度为n的序列$a_i$.m个询问,每个询问形如l,r:将[l,r]中的所有$a_i$排序并去重,设得到的新数列为$b_i$,求$b_1 ...

  6. python nose测试框架全面介绍七--日志相关

    引: 之前使用nose框架时,一直使用--logging-config的log文件来生成日志,具体的log配置可见之前python nose测试框架全面介绍四. 但使用一段时间后,发出一个问题,生成的 ...

  7. Unity3D笔记十九 持久化数据

    1.PlayerPrefs类(生命周期???) 1.1 保存与读取数据 在C#中类似缓存.Cookie.Session等保存数据的,但是有点区别的是在C#中如果在取值时没有取到默认值则返回值是NULL ...

  8. mysql if判断

    select if(SUBSTR('06622200556',1,2)='06',0,1) from t_member_product_adb limit 2 输出结果为:0,0

  9. thinkphp开启事物的简单方法

    使用thinkphp开启事务,ThinkPHP 3.2.2实现事务操作的方法: 开启事务: $User->startTrans() 提交事务: $User->commit() 事务回滚: ...

  10. SVN Hook造成SVN提交速度慢的问题

    单就个人感情来说,我其实喜欢git.但显然subversion才是更普遍的版本控制管理工具,适合用在团队开发中. 那么,有一个很常见的需求就是把工程师提交的代码,更新到htdocs目录,这时候需要用s ...