解决的目标问题:多分类问题,比如车辆的外形和颜色,苹果的大小和颜色;多任务:车牌角点的定位和车牌的颜色。定位在技术上属于回归,车牌颜色判断则属于分类。
  
  技术点
  
  caffe默认是单输入任务单标签的,也就是一个样本,其任务只有一个,标签只有一个,比如图片是什么颜色,图片是什么物体。
  
  # ${caffe_src_root}/tools/convert_imageset.cpp 第121行
  
  status = ReadImageToDatum(root_folder + lines[line_id].first,
  
  lines[line_id].second, resize_height, resize_width, is_color,
  
  enc, &datum);
  
  ## 其中 ReadImageToDatum的定义如下 ${caffe_src_root}/include/caffe/util/io.hpp
  
  bool ReadImageToDatum(const string& filename, const int label,
  
  const int height, const int width, const bool is_color,
  
  const std::string & encoding, Datum* datum);
  
  ## ${caffe_src_root}/src/caffe/util/io.cpp 中的该函数实现,涉及到Datum的定义,需要把Datum定义修改成也要支持多标签
  
  bool ReadImageToDatum(const string& filename, const int label,
  
  const int height, const int width, const bool is_color,
  
  const std::string & encoding, Datum* datum) {
  
  cv::Mat cv_img = ReadImageToCVMat(filename, height, width, is_color);
  
  if (cv_img.data) {
  
  if (encoding.size()) {
  
  if ( (cv_img.channels() == 3) == is_color && !height && !width &&
  
  matchExt(filename, encoding) )
  
  return ReadFileToDatum(filename, label, datum);
  
  std::vector<uchar> buf;
  
  cv::imencode("."+encoding, cv_img, buf);
  
  datum->set_data(std::string(reinterpret_cast<char*>(&buf[0]),
  
  buf.size()));
  
  datum->set_label(label);
  
  datum->set_encoded(true);
  
  return true;
  
  }
  
  CVMatToDatum(cv_img, datum);
  
  datum->set_label(label);
  
  return true;
  
  } else {
  
  return false;
  
  }
  
  }
  
  为了支持多任务,多标签,首先要解决输入问题。比如一个样本 定义如下:
  
  vehicle/1.jpg 0 1
  
  修改源码支持多标签
  
  其中第一个属性是车辆外形,0代表sedian,第二个属性是车身颜色,1代表白色。假如图片是60x60的RGB图像, 如果是单任务多属性输入,一个简单的更改方案是把ReadImageToDatum函数修改成如下定义,并修改相关的实现函数和convert_imageset.cpp
  
  bool ReadImageToDatum(const string& filename, const vector<int> & labels,
  
  const int height, const int width, const bool is_color,
  
  const std::string & encoding, Datum* datum);
  
  faster rcnn采用自定义的python输入层作用训练输入,输入有多个labels,检测目标的roi,其中bbox_targets, bbox_inside_weights, bbox_outside_weights是作为SmoothL1Loss损失函数的输入。自定义python输入层的源码参考 py-faster-rcnn/lib/roi_data_layer/
  
  name: "VGG_ILSVRC_16_layers"
  
  layer {
  
  name: 'data'
  
  type: 'Python'
  
  top: 'data'
  
  top: 'rois'
  
  top: 'labels'
  
  top: 'bbox_targets'
  
  top: 'bbox_inside_www.jiahuayulpt.com weights'
  
  top: 'bbox_outside_weights'
  
  python_param {
  
  module: 'roi_data_www.baohuayule.net/ layer.layer'
  
  layer: 'RoIDataLayer'
  
  param_str: "'num_classes': 21"
  
  }
  
  }
  
  从https://github.com/HolidayXue/CodeSnap/blob/master/convert_multilabel.cpp源码修改,保存到${caffe_root}/tools/convert_multi_label_www.yongshi123.cn imageset.cpp,重新编译caffe工程,在${caffe_root}目录下运行该工具,
  
  .build_release/tools/convert_multi_label_imageset.bin -resize_width=256 -resize_height=256 ~/my\ workspace/bounding-box-tool/mlds/train.list /train-data/vehicle-type-color-dataset/
  
  多数据源输入支持多标签
  
  假设对于HxW的RGB图像,转换成caffe的blob定义上1x3xHxW,对于一个任务的有n个标签,则其blob定义是1xnx1x1,每个任务对应一个blob,???那么可以在在第二维度对两个blob进行拼接???
  
  拼接之后再从第二维度对blob进行切分操作,切分出多个blob,作为每个属性训练任务的输入
  
  拼接之后进行常规的卷积操作,只是在最后的每个任务的损失函数之前的fc层再切分,如下图
  
  训练
  
  参考faster-rcnn的模型,可以看到损失函数是相互独立的,但多了一个weight参数,猜测是caffe在训练时,按下面的公式计算总的损失
  
  Lt = w1*L1 + w2 * L2
  
  faster-rcnn中经过一系列卷积层后,连接了一个ROIPooling层,再接上FC6、FC7层,从最后一个FC7层一分为2,分别接一个cls_score的FC层和名为loss_cls的SoftMaxWithLoss,接bbox_pred的FC层和名为loss_bbox的SmoothL1Loss的回归层
  
  参考:
  
  https://arxiv.org/abs/1604.02878v1
  
  https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html?from=timeline&isappinstalled=1
  
  https://kpzhang93.github.io/MTCNN_face_www.078886.cn detection_alignment/paper/spl.pdf
  
  https://github.com/happynear/MTCNN_face_detection_alignment
  
  https://github.com/naritapandhe/Gender-Age-Classification-CNN
  
  https://github.com/cunjian/multitask_CNN
  
  https://zhuanlan.zhihu.com/p/22190532
  
  https://github.com/rbgirshick/ www.tiaotiaoylzc.com py-faster-rcnn/blob/master/models/pascal_voc/VGG16/fast_rcnn/train.prototxt
  
  ${caffe_source_root}/examples/pascal-multilabel-with-datalayer.ipynb
  
  http://www.cnblogs.com/yymn/articles/7741741.html
  
  https://yq.aliyun.com/ziliao/572047
  
  https://blog.csdn.net/u013010889/article/details/53098346
  
  caffe网络在线可视化工具: http://www.yongshiyule178.com ethereon.github.io/netscope/#/editor

caffe多任务、多标签的更多相关文章

  1. Caffe实现多标签输入,添加数据层(data layer)

    因为之前遇到了sequence learning问题(CRNN),里面涉及到一张图对应多个标签.Caffe源码本身是不支持多类标签数据的输入的. 如果之前习惯调用脚本create_imagenet.s ...

  2. caffe读取多标签的lmdb数据

    问题描述: lmdb文件支持数据+标签的形式,但是却只能写入一个标签,引入多标签的解决方法有很多,这儿详细说一下我的办法:制作多个data数据,分别加入一个标签.我的方法只适用于标签数量较少的情况,标 ...

  3. caffe实现多任务学习

    Github: https://github.com/Haiyang21/Caffe_MultiLabel_Classification Blogs  1. 采用多label的lmdb+Slice L ...

  4. 多标签caffe重新编译

    说明: Caffe自带的图像转LMDB接口只支持单label,对于多label的任务,可以使用HDF5的格式,也可以通过修改caffe代码来实现.本篇文章介绍怎么通过修改DataLayer来实现带Mu ...

  5. MachineLN博客目录

    MachineLN博客目录 https://blog.csdn.net/u014365862/article/details/78422372 本文为博主原创文章,未经博主允许不得转载.有问题可以加微 ...

  6. Caffe-SSD相关源码说明和调试记录

    1      对Blob的理解及其操作: Blob是一个四维的数组.维度从高到低分别是: (num_,channels_,height_,width_) 对于图像数据来说就是:图片个数,彩色通道个数, ...

  7. 下载imagenet2012数据集,以及label说明

    updated@2018-12-07 15:22:08 官方下载地址:http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads , ...

  8. caffe 根据txt生成多标签LMDB数据

    1. 前提: 已经准备好train.txt, test.txt文件, 格式如下 此处有坑, 如果是windows下生成txt, 换行符为\r\n, 需要替换成 \n才能在linux运行. 可以使用se ...

  9. Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)

    适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...

随机推荐

  1. 大页内存(HugePages)

    原文转载自:http://blog.csdn.net/yutianzuijin/article/details/41912871 今天给大家介绍一种比较新奇的程序性能优化方法—大页内存(HugePag ...

  2. 【vue】MongoDB+Nodejs+express+Vue后台管理项目Demo

    ¶项目分析 一个完整的网站服务架构,包括:   1.web frame ---这里应用express框架   2.web server ---这里应用nodejs   3.Database ---这里 ...

  3. NanoPC-T2制作刷机包

    anoPC-T2制作刷机包 前提:到友善的wiki中,仔细看编译uboot.内核.制作刷机包的教程. 准备工作: 1. 虚拟机Ubuntu安装,并安装n多软件可以支撑编译内核等等. 2.  安装交叉编 ...

  4. bundle install 安装的 gem 提示 cannot load such file

    /usr/local/lib/ruby/site_ruby/2.1.0/rubygems/core_ext/kernel_require.rb:54:in `require': cannot load ...

  5. 20155210 Exp7 网络欺诈防范

    Exp7 网络欺诈防范 SET工具建立冒名网站 首先利用lsof -i:80或者netstat -tupln |grep 80查询80端口的使用情况(我的电脑80端口没有被占用,如果被占用,则用kil ...

  6. CS190.1x-ML_lab4_ctr_student

    这次lab主要主要是研究click-through rate (CTR).数据集来自于Kaggle的Criteo Labs dataset.相关ipynb文件见我github. 作业分成5个部分:on ...

  7. [UOJ#461]新年的Dog划分[二分图染色、二分]

    题意 给你一张无向连通图,你并不知道有哪些边,你首先要回答这张图是否是二分图,如果是,回答这张图黑白染色过后的任意一个点集.你需要在2000次询问内找到结果,每次你可以询问原图中一个边集删掉后是否还连 ...

  8. 使用Python实时获取cmd的输出

    最近发现一个问题,一个小伙儿写的console程序不够健壮,监听SOCKET的时候容易崩,造成程序的整体奔溃,无奈他没有找到问题的解决办法,一直解决不了,可是这又是一个监控程序,还是比较要紧的,又必须 ...

  9. Python中浅拷贝和深拷贝的区别总结与理解

    单层浅拷贝 import copy a = 1 # 不可变数据类型 copy_a = copy.copy(a) print(id(a),id(copy_a)) # 内存地址相同 a = [1,2] # ...

  10. Docker部署Registry私有镜像库

    拉取镜像 docker pull registry:2.6.2   生成账号密码文件,这里采用htpasswd方式认证 docker run --rm --entrypoint htpasswd re ...