Machine learning 第5周编程作业
1.Sigmoid Gradient

function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
% g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
% evaluated at z. This should work regardless if z is a matrix or a
% vector. In particular, if z is a vector or matrix, you should return
% the gradient for each element. g = zeros(size(z)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
% each value of z (z can be a matrix, vector or scalar). g=sigmoid(z).*(1-sigmoid(z)); % ============================================================= end
2.nnCostFunction
这是一道综合问题;
Ⅰ:计算代价函数J(前向传播)
Ⅱ:BackPropagation
Ⅲ:正则化;





function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
% % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1)); % Setup some useful variables
m = size(X, 1); % You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
% X=[ones(m,1) X];
a1=Theta1*X';
z1=[ones(m,1),sigmoid(a1)'];
a2=Theta2*z1';
h=sigmoid(a2); yy=zeros(m,num_labels);
for i=1:m,
yy(i,y(i))=1;
endfor
J=1/m*sum( sum( (-yy).*log(h')-(1-yy).*log(1-h') ) ); J=J+lambda/(2*m)*( sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2))); for i=1:m,
a1=X(i,:)';
z2=Theta1*a1;
a2=[1;sigmoid(z2)];
z3=Theta2*a2;
a3=sigmoid(z3);
tmpy=yy(i,:);
dlt3=a3-tmpy';
dlt2=(Theta2(:,2:end)'*dlt3.*sigmoidGradient(z2)); Theta1_grad=Theta1_grad+dlt2*a1';
Theta2_grad=Theta2_grad+dlt3*a2';
endfor Theta1_grad=Theta1_grad./m;
Theta2_grad=Theta2_grad./m; Theta1(:,1)=0;
Theta2(:,1)=0; Theta1_grad=Theta1_grad+lambda/m*Theta1;
Theta2_grad=Theta2_grad+lambda/m*Theta2; % ------------------------------------------------------------- % ========================================================================= % Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)]; end
Machine learning 第5周编程作业的更多相关文章
- Machine learning 第7周编程作业 SVM
1.Gaussian Kernel function sim = gaussianKernel(x1, x2, sigma) %RBFKERNEL returns a radial basis fun ...
- Machine learning第6周编程作业
1.linearRegCostFunction: function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC ...
- Machine learning 第8周编程作业 K-means and PCA
1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...
- Machine learning第四周code 编程作业
1.lrCostFunction: 和第三周的那个一样的: function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTI ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- c++ 西安交通大学 mooc 第十三周基础练习&第十三周编程作业
做题记录 风影影,景色明明,淡淡云雾中,小鸟轻灵. c++的文件操作已经好玩起来了,不过掌握好控制结构显得更为重要了. 我这也不做啥题目分析了,直接就题干-代码. 总结--留着自己看 1. 流是指从一 ...
- Machine Learning - 第7周(Support Vector Machines)
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...
- Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)
In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...
随机推荐
- AES CFB/OFB/ECB/CBC/CTR优缺点
AES CFB/OFB/ECB/CBC/CTR优缺点 摘自:http://www.metsky.com/archives/418.html 发表时间:2010年05月11 分类: 网络日志 作者: 天 ...
- JavaScript 对象属性作实参以及实参对象的callee属性
参考自<<JavaScript权威指南 第6版>> /* * 将对象属性用作实参, 从而不必记住参数的顺序. */ function arraycopy(from,from_s ...
- 说说eclipse调优,缩短启动时间
初始配置: -startup plugins/org.eclipse.equinox.launcher_1.3.0.v20140415-2008.jar --launcher.library plug ...
- (字符串 KMP)Blue Jeans -- POJ -- 3080:
链接: http://poj.org/problem?id=3080 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88230#probl ...
- user_mongo_in_a_docker_and_dump_database
使用 mongo docker 镜像 使用 mongo 镜像是很方便的,直接使用官方镜像就好了,为了今后更方便使用,这里给出依据 restheart-docker 中的 docker-compose. ...
- Centos环境下手动设置-网络参数配置-网络挨排错顺序-设置网卡为上网模式的设定
Linux中网络参数大致包含以下内容: IP地址 子网掩码 网关 DNS服务器 主机名(默认 localhost) 历来Linux系统中修改这些参数的方式通常有:命令.文件两种.其中通过命令设置可以立 ...
- Modelsim设置数据以模拟波形显示
选中希望以模拟波形显示的信号,右击选择format—>Analog(automatic) 如果你的数据是用无符号数表示一个完整的波形的,那么可能显示出来的波形样子是下面的样子,不过不要紧,这是因 ...
- Quartus II 软件生成FFT、NCO、FIR等IP核时卡住不动的解决办法
据网友表示,遇到这个问题时,在任务管理器中手动关闭quartus_map进程就可以了,由于我的电脑最近一直没有出问题,因此也无法验证.欢迎大家针对这个问题讨论,提出肯定.否定的说法. 另外,很多人表示 ...
- 【StatLearn】统计学习中knn算法的实验(1)
Problem: Develop a k-NN classifier with Euclidean distance and simple voting Perform 5-fold cross va ...
- Hook ptrace 调试加入了ptrace函数的程序
Hook ptrace 调试加入了ptrace函数的程序 #import <substrate.h> #if !defined(PT_DENY_ATTACH)#define PT_DENY ...