1.Sigmoid Gradient

function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
% g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
% evaluated at z. This should work regardless if z is a matrix or a
% vector. In particular, if z is a vector or matrix, you should return
% the gradient for each element. g = zeros(size(z)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
% each value of z (z can be a matrix, vector or scalar). g=sigmoid(z).*(1-sigmoid(z)); % ============================================================= end

  

2.nnCostFunction

这是一道综合问题;

Ⅰ:计算代价函数J(前向传播)

Ⅱ:BackPropagation

Ⅲ:正则化;

function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
% % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1)); % Setup some useful variables
m = size(X, 1); % You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
% X=[ones(m,1) X];
a1=Theta1*X';
z1=[ones(m,1),sigmoid(a1)'];
a2=Theta2*z1';
h=sigmoid(a2); yy=zeros(m,num_labels);
for i=1:m,
yy(i,y(i))=1;
endfor
J=1/m*sum( sum( (-yy).*log(h')-(1-yy).*log(1-h') ) ); J=J+lambda/(2*m)*( sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2))); for i=1:m,
a1=X(i,:)';
z2=Theta1*a1;
a2=[1;sigmoid(z2)];
z3=Theta2*a2;
a3=sigmoid(z3);
tmpy=yy(i,:);
dlt3=a3-tmpy';
dlt2=(Theta2(:,2:end)'*dlt3.*sigmoidGradient(z2)); Theta1_grad=Theta1_grad+dlt2*a1';
Theta2_grad=Theta2_grad+dlt3*a2';
endfor Theta1_grad=Theta1_grad./m;
Theta2_grad=Theta2_grad./m; Theta1(:,1)=0;
Theta2(:,1)=0; Theta1_grad=Theta1_grad+lambda/m*Theta1;
Theta2_grad=Theta2_grad+lambda/m*Theta2; % ------------------------------------------------------------- % ========================================================================= % Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)]; end

  

Machine learning 第5周编程作业的更多相关文章

  1. Machine learning 第7周编程作业 SVM

    1.Gaussian Kernel function sim = gaussianKernel(x1, x2, sigma) %RBFKERNEL returns a radial basis fun ...

  2. Machine learning第6周编程作业

    1.linearRegCostFunction: function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC ...

  3. Machine learning 第8周编程作业 K-means and PCA

    1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...

  4. Machine learning第四周code 编程作业

    1.lrCostFunction: 和第三周的那个一样的: function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTI ...

  5. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  6. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  7. c++ 西安交通大学 mooc 第十三周基础练习&第十三周编程作业

    做题记录 风影影,景色明明,淡淡云雾中,小鸟轻灵. c++的文件操作已经好玩起来了,不过掌握好控制结构显得更为重要了. 我这也不做啥题目分析了,直接就题干-代码. 总结--留着自己看 1. 流是指从一 ...

  8. Machine Learning - 第7周(Support Vector Machines)

    SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...

  9. Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)

    In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...

随机推荐

  1. cmake get_filename_component

    get_filename_component Get a specific component of a full filename. get_filename_component(<VAR&g ...

  2. php快速获取所有的自定义常量用户常量

    快速获取自定义的常量.用户常量 echo "<pre>"; print_r(get_defined_constants(true)['user']); echo &qu ...

  3. Linux下删除文件系统空间不释放的问题

    删除了Linux下的一个文件,但是系统空间并没有被释放. 如下:/home/hadmin/data/hadoop 使用了1.3T的空间,但是实际只使用了600多G 原因是我删除了一个600多G的文件, ...

  4. MyEclipse中Web项目文件名上红色和黄色感叹号处理

      MyEclipse中Web项目文件名上红色和黄色感叹号处理     先说红色感叹号: 那就是代表错误,说明你引用的JAR包位置无效,所以,你应该重新将包导入到工程里面去,这个具体应该会吧,如果是初 ...

  5. Executing a Finite-Length Task in the Background

    [Executing a Finite-Length Task in the Background] Apps that are transitioning to the background can ...

  6. JScript 对象 <|> JSON

    <script type="text/javascript"> function test(){ var array = [{"id":1},{&q ...

  7. ZOJ2208 To and Fro 2017-04-16 19:30 45人阅读 评论(0) 收藏

    To and Fro Time Limit: 2 Seconds      Memory Limit: 65536 KB Mo and Larry have devised a way of encr ...

  8. 数据恢复软Extundelete

    1>概述  作为一名运维人员,保证数据的安全是根本职责,所以在维护系统的时候,要慎重和细心,但是有时也难免发生出现数据被误删除的情况,这个时候该如何              快速.有效地恢复数 ...

  9. DataTable转List<T>

    /// <summary> /// DataTable转List<T> /// </summary> public static class TableToList ...

  10. ASP.NET MVC 防止CSRF攻击

    简介 MVC中的Html.AntiForgeryToken()是用来防止跨站请求伪造(CSRF:Cross-site request forgery)攻击的一个措施,它跟XSS(XSS又叫CSS:Cr ...