Area(Pick定理POJ1256)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 5429 | Accepted: 2436 |
Description
robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted.
Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight
walls are used. Figure 1 shows the course of a robot around an example area.

Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula
he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that
simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair
means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself
except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100
units.
Output
Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
Source
#include <set>
#include <map>
#include <list>
#include <stack>
#include <cmath>
#include <vector>
#include <queue>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const double eps = 1e-5;
int n,m;
struct node
{
int x;
int y;
}Point[110]; int GCD(int a,int b)//计算边缘上的点,不计起点(将两个点转化为向量,<strong>a</strong>=n<strong>b,</strong>每个向量都可由从起点起,第一个到达格点的点形成的向量组成,(想想为什么),n就是这个向量的x,y的GCD)
{
return b==0?a:GCD(b,a%b);
} int area(node a,node b)//叉积计算面积
{
return a.x*b.y-a.y*b.x;
}
int main()
{
int T;
int m;
int w=1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&m);
int num=0;
int ant=0;
double ans=0;
for(int i=0;i<m;i++)
{
scanf("%d %d",&Point[i].x,&Point[i].y);
if(i)
{
Point[i].x+=Point[i-1].x;
Point[i].y+=Point[i-1].y;
num+=GCD(abs(Point[i].x-Point[i-1].x),abs(Point[i].y-Point[i-1].y));
ans+=area(Point[i-1],Point[i]);
}
}
num+=GCD(abs(Point[n-1].x-Point[0].x),abs(Point[n-1].y-Point[0].y));
ans+=area(Point[m-1],Point[0]);
if(ans<0)
{
ans=-ans;
}
ant=(int)(ans/2-(double)num/2+1);//pick定理
printf("Scenario #%d:\n",w++);
printf("%d %d %.1f\n\n",ant,num,ans/2);
}
return 0;
}
Area(Pick定理POJ1256)的更多相关文章
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ1265——Area(Pick定理+多边形面积)
Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...
- poj 1265 Area(pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4373 Accepted: 1983 Description Bein ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- [poj 1265]Area[Pick定理][三角剖分]
题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...
- Area(pick定理)
http://poj.org/problem?id=1265 题意:起始为(0,0),给出每个点的偏移量,求依次连接这些点形成的多边形边界上格点的个数. 思路:先将各个点的坐标求出存入,由pick定理 ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
- poj 1265 Area(Pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5666 Accepted: 2533 Description ...
- POJ 1265 Area POJ 2954 Triangle Pick定理
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5227 Accepted: 2342 Description ...
随机推荐
- intellij idea exclude from compile后怎么加回来
File->Settings-> Build,Execution,Deployment->Compiler-> Execludes
- Greenplum:学习资料
Greenplum技术浅析:http://www.cnblogs.com/end/archive/2012/08/17/2644290.html Greenplum 数据库架构分析:http://ww ...
- 学习CSS3BUTTON(一)
CSS3 Buttons is a simple framework for creating good-looking GitHub style button links. 引用方式: <li ...
- [转]有哪些值得关注的技术博客(Java篇)
有哪些值得关注的技术博客(Java篇) 大部分程序员在自学的道路上不知道走了多少坑,这个视频那个网站搞得自己晕头转向.对我个人来说我平常在学习的过程中喜欢看一些教程式的博客.这些博客的特点: 1. ...
- thinkphp介绍
1.thinkphp是一个免费的开源的轻量级的高效的国产的php框架 2.现在主流的框架有: zend framwork 框架,功能十分齐全,是php官网开发的一个框架 yii框架 十分轻巧的 ...
- webDriver中的alert
driver.switchTo().alert();这句可以得到alert\confirm\prompt对话框的对象,然后运用其方法对它进行操作.对话框操作的主要方法有: getText() ...
- Beta—review阶段成员贡献分
小组名称:nice! 小组成员:李权 于淼 刘芳芳 韩媛媛 宫丽君 项目内容:约跑app 分数分配规则 个人贡献分=项目基础分*0.5+个人表现分*0.5 基本贡献分 个人表现分 个人总分 于淼 2. ...
- 华为项目管理10大模板Excel版(可直接套用_非常实用)
项目管理是管理学的一个分支学科 ,对项目管理的定义是:指在项目活动中运用专门的知识.技能.工具和方法,使项目能够在有限资源限定条件下,实现或超过设定的需求和期望的过程.项目管理是对一些与成功地达成一系 ...
- python PIL安装
PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了.PIL功能非常强大,但API却非常简单易用. 安装PIL 在Debian/Ubuntu Linux ...
- 161018、springMVC中普通类获取注解service方法
1.新建一个类SpringBeanFactoryUtils 实现 ApplicationContextAware package com.loiot.baqi.utils; import org.sp ...