题意

有n个格子,标号为0 ~ n-1,每个格子上有若干石子,每次操作可以选一个0 ~ n-2的格子上的一颗石子,分裂为两颗,然后任意放在后面的两个格子内,这两个格子可以相同.求使先手必胜的第一步的方案数以及最小字典序的方案.

分析

每一个石子都是独立的,所以考虑某一位上的一颗石子的SG函数,再异或起来就行了.实际上只用异或石子数为奇数的,因为偶数个石子异或两次相当于没有异或.

我们先把位置反向并从1~n标号,也就是最后边是1,最左边是n.这样就能对不同的n用同样的SG函数

那么对于位置iii,它的SG函数如下:

SG[i]=mex{ ∪i>j>=kSG[j] xor SG[k] }SG[i]=mex\{\ \cup_{i>j>=k}SG[j]\ xor\ SG[k] \ \}SG[i]=mex{ ∪i>j>=k​SG[j] xor SG[k] }

所以说直接预处理就行了

求方案的时候,注意字典序最小反序后就是字典序最大,所以要从大到小枚举

CODE

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
template<typename T>void read(T &num) {
char ch; int flg=1;
while((ch=getchar())<'0'||ch>'9')if(ch=='-')flg=-flg;
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
num*=flg;
}
const int MAXN = 22;
int SG[MAXN], n, A[MAXN], vis[50]; //vis要开大点,SG函数会超过n
inline void Pre() {
SG[1] = 0;
for(int i = 2; i < MAXN; ++i) {
for(int j = 1; j < i; ++j)
for(int k = j; k < i; ++k)
vis[SG[j]^SG[k]] = i;
for(SG[i] = 0; vis[SG[i]] == i; ++SG[i]);
}
}
inline void solve(int ans) {
int res = 0, ans1 = -1, ans2, ans3;
for(int i = n; i > 1; --i)
for(int j = i-1; j > 0; --j)
for(int k = j; k > 0; --k)
if((ans^SG[i]^SG[j]^SG[k]) == 0) {
++res;
if(!(~ans1))
ans1 = n-i, ans2 = n-j, ans3 = n-k;
}
printf("%d %d %d\n%d\n", ans1, ans2, ans3, res);
}
int main() {
int T; read(T); Pre();
while(T--) {
read(n);
int ans = 0;
for(int i = n; i > 0; --i) {
read(A[i]);
if(A[i]&1) ans ^= SG[i];
}
if(!ans) printf("-1 -1 -1\n0\n");
else solve(ans);
}
}

BZOJ 1188 / Luogu P3185 [HNOI2007]分裂游戏 (SG函数)的更多相关文章

  1. bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理

    [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1394  Solved: 847[Submit][Status][Dis ...

  2. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  3. bzoj 1188 : [HNOI2007]分裂游戏 sg函数

    题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手 ...

  4. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description ...

  5. BZOJ 1188 分裂游戏(sg函数)

    如果把每堆巧克力看做一个子游戏,那么子游戏会互相影响. 如果把全部堆看做一个子游戏,那么状态又太多. 如果把每一个单独的巧克力看成一个子游戏的话,那么状态很少又不会互相影响. 令sg[i]表示一个巧克 ...

  6. P3185 [HNOI2007]分裂游戏

    $ \color{#0066ff}{ 题目描述 }$ 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i ...

  7. [HNOI2007]分裂游戏 SG打表博弈

    结论:其实每一个巧克力都是一堆石子 它的石子数就是它到队尾的距离 打一个SG表即可 #include<bits/stdc++.h> using namespace std; typedef ...

  8. bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 733  Solved: 451[Submit][Status ...

  9. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

随机推荐

  1. kafka 名词解释及原理解析过程(三)

    为什么要了解这些名词的解释呢?因为在学一个新的知识或者领域的时候,我们需要知道它所定义的概念和名词意思,因为只有这样我们才能理解和掌握这个新的知识点,才能更加系统的掌握这个技术. 一.名词解释 1.b ...

  2. [转帖]你不曾见过的国产CPU:可能是最全的龙芯系列芯片家谱(下)

    你不曾见过的国产CPU:可能是最全的龙芯系列芯片家谱(下) https://www.ijiwei.com/html/news/newsdetail?source=pc&news_id=7177 ...

  3. [转帖]订购微软Windows 7延长支持服务的报价曝光 第三年要价两百美金

    订购微软Windows 7延长支持服务的报价曝光 第三年要价两百美金 cnbeta 年2月份的新闻 https://www.cnbeta.com/articles/tech/815885.htm 微软 ...

  4. 龙芯 飞腾 intel的 OpenBenchMarking数据

    1. 今天从openbenchmarking 里面进行了简单的查找. 数据主要为: 机器配置: LS3A3000的数据为: 来源: https://openbenchmarking.org/resul ...

  5. 小菜鸟之shell

    Linux shell编程 目录 什么是Shell 1 Shell脚本的执行方式 1 第一种:输入脚本的绝对路径或相对路径 1 第二种:bash或sh +脚本 1 Shell中的变量 2 定义变量 2 ...

  6. 序列化,os,sys,hashlib,collections

    序列化,os,sys,hashlib,collections 1.序列化 什么是序列化?序列化的本质就是将一种数据结构(如字典,列表)等转换成一个特殊的序列(字符串或者bytes)的过程就叫做序列化. ...

  7. S02_CH03_EMIO实验Enter a post title

    S02_CH03_EMIO实验 3.1 EMIO 和MIO的对比介绍 上次讲到MIO的使用,初步熟悉了EDK的使用,这次就来说说EMIO的使用.如你所见zynq的GPIO,分为两种,MIO(multi ...

  8. 第八章 ZYNQ-MIZ701 软硬调试高级技巧

      软件和硬件的完美结合才是SOC的优势和长处,那么开发ZYNQ就需要掌握软件和硬件开发的调试技巧,这样才能同时分析软件或者硬件的运行情况,找到问题,最终解决.那么本章将通过一个简单的例子带大家使用v ...

  9. linux——环境变量

    环境变量 基本概念: 一般是指在操作系统中用来指定操纵系统运行环境的一些参数 当我们用动态库链接成功的时候,其实就是相关的环境变量帮助编译器进行查找. 环境变量通常具有某种特殊用途,还有在系统当中通常 ...

  10. SqlServer 附加数据库出错

    方法一 找到要添加数据库的.mdf文件,点击右键,选择属性 在属性页面点击安全,选择Authenticated Users,单击编辑 Authenticated Users权限中选择完全控制,点击确定 ...