题意

有n个格子,标号为0 ~ n-1,每个格子上有若干石子,每次操作可以选一个0 ~ n-2的格子上的一颗石子,分裂为两颗,然后任意放在后面的两个格子内,这两个格子可以相同.求使先手必胜的第一步的方案数以及最小字典序的方案.

分析

每一个石子都是独立的,所以考虑某一位上的一颗石子的SG函数,再异或起来就行了.实际上只用异或石子数为奇数的,因为偶数个石子异或两次相当于没有异或.

我们先把位置反向并从1~n标号,也就是最后边是1,最左边是n.这样就能对不同的n用同样的SG函数

那么对于位置iii,它的SG函数如下:

SG[i]=mex{ ∪i>j>=kSG[j] xor SG[k] }SG[i]=mex\{\ \cup_{i>j>=k}SG[j]\ xor\ SG[k] \ \}SG[i]=mex{ ∪i>j>=k​SG[j] xor SG[k] }

所以说直接预处理就行了

求方案的时候,注意字典序最小反序后就是字典序最大,所以要从大到小枚举

CODE

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
template<typename T>void read(T &num) {
char ch; int flg=1;
while((ch=getchar())<'0'||ch>'9')if(ch=='-')flg=-flg;
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
num*=flg;
}
const int MAXN = 22;
int SG[MAXN], n, A[MAXN], vis[50]; //vis要开大点,SG函数会超过n
inline void Pre() {
SG[1] = 0;
for(int i = 2; i < MAXN; ++i) {
for(int j = 1; j < i; ++j)
for(int k = j; k < i; ++k)
vis[SG[j]^SG[k]] = i;
for(SG[i] = 0; vis[SG[i]] == i; ++SG[i]);
}
}
inline void solve(int ans) {
int res = 0, ans1 = -1, ans2, ans3;
for(int i = n; i > 1; --i)
for(int j = i-1; j > 0; --j)
for(int k = j; k > 0; --k)
if((ans^SG[i]^SG[j]^SG[k]) == 0) {
++res;
if(!(~ans1))
ans1 = n-i, ans2 = n-j, ans3 = n-k;
}
printf("%d %d %d\n%d\n", ans1, ans2, ans3, res);
}
int main() {
int T; read(T); Pre();
while(T--) {
read(n);
int ans = 0;
for(int i = n; i > 0; --i) {
read(A[i]);
if(A[i]&1) ans ^= SG[i];
}
if(!ans) printf("-1 -1 -1\n0\n");
else solve(ans);
}
}

BZOJ 1188 / Luogu P3185 [HNOI2007]分裂游戏 (SG函数)的更多相关文章

  1. bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理

    [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1394  Solved: 847[Submit][Status][Dis ...

  2. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  3. bzoj 1188 : [HNOI2007]分裂游戏 sg函数

    题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手 ...

  4. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description ...

  5. BZOJ 1188 分裂游戏(sg函数)

    如果把每堆巧克力看做一个子游戏,那么子游戏会互相影响. 如果把全部堆看做一个子游戏,那么状态又太多. 如果把每一个单独的巧克力看成一个子游戏的话,那么状态很少又不会互相影响. 令sg[i]表示一个巧克 ...

  6. P3185 [HNOI2007]分裂游戏

    $ \color{#0066ff}{ 题目描述 }$ 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i ...

  7. [HNOI2007]分裂游戏 SG打表博弈

    结论:其实每一个巧克力都是一堆石子 它的石子数就是它到队尾的距离 打一个SG表即可 #include<bits/stdc++.h> using namespace std; typedef ...

  8. bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 733  Solved: 451[Submit][Status ...

  9. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

随机推荐

  1. centos6.5安装python3及virtualenv环境

    1. 下载源码: wget https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz wget http://mirrors.sohu.com/ ...

  2. Win7 Eclipse 搭建spark java1.8环境:WordCount helloworld例子

    [学习笔记] Win7 Eclipse 搭建spark java1.8环境:WordCount helloworld例子在eclipse oxygen上创建一个普通的java项目,然后把spark-a ...

  3. Python解Leetcode: 226. Invert Binary Tree

    leetcode 226. Invert Binary Tree 倒置二叉树 思路:分别倒置左边和右边的结点,然后把根结点的左右指针分别指向右左倒置后返回的根结点. # Definition for ...

  4. Photon Server 实现注册与登录(二) --- 服务端代码整理

    一.有的代码前端和后端都会用到.比如一些请求的Code.使用需要新建项目存放公共代码. 新建项目Common存放公共代码: EventCode :存放服务端自动发送信息给客户端的code Operat ...

  5. Python 【格式化字符串】

    print('血量:'+str(player_life)+' 攻击:'+str(player_attack)) 第一种格式化字符串 print('血量:%s 攻击:%s' % (player_life ...

  6. rabbitmq消息队列,消息发送失败,消息持久化,消费者处理失败相关

    转:https://blog.csdn.net/u014373554/article/details/92686063 项目是使用springboot项目开发的,前是代码实现,后面有分析发送消息失败. ...

  7. Go语言GOPATH详解(Go语言工作目录)

    GOPATH 是 Go语言中使用的一个环境变量,它使用绝对路径提供项目的工作目录. 工作目录是一个工程开发的相对参考目录,好比当你要在公司编写一套服务器代码,你的工位所包含的桌面.计算机及椅子就是你的 ...

  8. hdu 3371 有毒的卡时间题目

    同样的代码 每次交的结果都不一样 #include<stdio.h> #include<string.h> #include<stdlib.h> #include& ...

  9. gitlab 搭建

     一.ubuntu搭建gitlab     1. 如果以前有安装过gitlab请根据以下步骤来删除 https://www.cnblogs.com/shansongxian/p/6678110.htm ...

  10. synchronized 底层实现原理

    线程在获取锁的时候,其指针指向的是一个monitor对象(由C++实现)的起始地址.每个对象实例都会有一个 monitor.其中monitor可以与对象一起创建.销毁:亦或者当线程试图获取对象锁时自动 ...