论文:DetNet: A Backbone network for Object Detection
发表时间:2018
发表作者:(Face++)Chao Peng, Gang Yu (Tsinghua University)Zeming Li
发表刊物/会议:ECCV
论文链接:论文链接

DetNet

基于CNN的目标检测器可以分为两类:单阶段(one-stage)检测器,如YOLO、SSD、RetinaNet,以及双阶段(two-stage)检测器,典型的如Faster-RCNN、R-FCN、FPN。这两类检测器都要使用到在ImageNet上预训练的分类网络作为骨干网。这也正是被作者认为有缺陷的地方。图像分类毕竟不同于目标检测,它既不需要识别目标的语义特征,也不需要对目标进行定位。
具体说来,使用分类网络作为目标检测的骨干网有两个问题:
1). 最近提出的检测器如FPN,它为了能够检测不同尺寸的目标增加了额外的阶段。我们经常使用ResNet或VGG作为骨干网,像ResNet50它总共包含5个阶段(C1-C5),但是FPN在此基础上增加了一个阶段,而增加的这个阶段是没有经过预训练的。
2). 传统的骨干网采用更大的降采样率产生更大的感受野,这对于图像分类来说有效,即牺牲了空间分辨率,不利于精确定位大的目标和识别小的目标。具体地说:1、大物体的回归弱:在FPN等物体检测网络中,大物体是在比较深的特征图上预测(因为深的特征图对应原图的比例大,感受野大,对应的anchor的scale大),然而由于特征图越深,物体边缘的清晰度就越差(模糊),就很难准确回归; 2、小物体在小分辨率特征图上不可见:由于特征图的分辨率减少到原来的1/32,或者更小,小物体在上面是不可见的(32x32的物体在上面只有一个点),FPN等方法,使用分辨率大但是比较浅的层来解决这个问题,由于这些层的语义信息比较弱,没有充分的能力去识别物体,FPN把浅层和语意信息强的深层相加,来提升浅层的语义表达能力,但是由于小物体已经在“深层”中消失,所以他们的语义信息也会丢失。

DetNet兼顾以上两大问题,具体说来,首先为了识别不同尺寸的目标,DetNet也像FPN一样增加了额外的阶段,但即使增加了额外的阶段DetNet也保持了高分辨率。但是,高分辨显然会带来计算和内存的开销,为了不降低DetNet网络的效率,作者采用了一种低复杂度的扩张的瓶颈层.

框架

DetNet1

上图是应用于FPN的不同骨干网络,其中(A)为含传统骨干网的特征金字塔网络,(B)为用于图像分类的传统骨干网,(C)为DetNet提出的骨干网。这里作者受限于版面大小,没有将第一阶段(stage 1,with stride 2)展示出来。从图(C)也可以明显地看出DetNet的不同之处,首先相比(B)这一传统的分类网络,DetNet增加了一个阶段P6,FPN也同样是增加了P6,目的是为了识别更大的目标。其次作者所说的保持空间分辨率,也就是在最后三个阶段(P4,P5,P6)分辨率一直保持着16X。

DetNet的结构是在ResNet50的基础上进行改进,因为ResNet50本身性能优异,经常用来作为目标检测的骨干网。为了和ResNet50进行PK,DetNet的前4个阶段(1,2,3,4)保持了和ResNet50一致。在上文中也有所提及,要为目标检测设计一下高效且有用的骨干网络要面对两方面的挑战。首先,你要为深层网络维持高的空间分辨率,但高分辨率势必又会带来时间和内存上的巨大的成本。其次,如果减小降采样率也就相当于减小了有效的感受野,这对于图像分类和语义分割来说都是有害的。那面对这两项挑战,DetNet是如何做的呢?
通过下面这幅图来分析DetNet59的细节,它是由ResNet50扩展而来。

  1. 引入一个新的阶段P6,随后将用于FPN中的目标检测。同时,从第4阶段开始,固定空间分辨率为输入图像的16X降采样;
  2. 因为自第4阶段后空间尺寸被固定,为了增加一个新的阶段P6,作者引入了dilated bottleneck(如下图B)。
  3. 使用dilated bottleneck作为一个基础的网络块有效地扩大的感受野。由于dilated convolution仍然是耗时的,所以第5阶段和第6阶段保持和第4阶段一样的通道数(256 input channels for bottleneck block)。这一点也不同于传统骨干网,后者在后一个阶段会将通道数翻倍。

DetNet2

很容易将DetNet和目标检测器(无论是否应用特征金字塔结构)结合,下图是基于DetNet的FPN结构。因为DetNet只是改变了FPN的骨干网络,所以固定除骨干网以外的其它结构。而且,因为没有减少ResNet-50自第4阶段后的空间尺寸,所以只简单地沿从顶向下的方向(in top-down path way)将这些阶段的输出进行相加。

DetNet3

实验

作者使用8张Pascal TITAN XP GPU进行端到端的训练,权重衰减因子为0.0001,动量为0.9。每个mini-batch含2张图片,因为有8卡张并行训练,所有有效batch-size是16。为了避免过高的内存消耗,图象大小做了调整,短边统一为800像素,长边为1333像素。训练过程使用经典的"2x"方法,初始学习率设置为0.02,在120k和160k次迭代时乘以一下0.1的衰减因子,最终在180k次迭代后终止。此外,在最开始的500个迭代,使用学习率为0.02 x 0.3进行预热。

DetNet4

上面是在FPN中使用三种不同的骨干网进行测试的对比结果。相比ResNet-59,DetNet-50新增一个阶段P6,很自然地会认为DetNet-50之所以表现优于ResNet-59完全是得意于更多的参数,但和ResNet-101的对比可以看出,虽然ResNet-101的参数远多于DetNet-50,表现却弱于DetNet50,所以说并不是参数多少决定的,只能说DetNet-50在设计上更加合理。

DetNet5

为了进一步检验DetNet在目标检测上的性能,基于DetNet-59和ResNet-50的FPN从头进行训练,也就是说不使用ImageNet上的预训练参数。结果(见上表)表明DetNet-59的mAP高出ResNet-50约1.8个点,这也就进一步证明了DetNet更适合于目标检测。

Paper Reading:DetNet的更多相关文章

  1. Paper Reading: Stereo DSO

    开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...

  2. [Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph

    <Exploiting Relevance Feedback in Knowledge Graph> Publication: KDD 2015 Authors: Yu Su, Sheng ...

  3. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  4. Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

    In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes ...

  5. Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...

  6. Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...

  7. Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★

    Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...

  8. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  9. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

随机推荐

  1. Leetcode之148. Sort List Medium

    https://leetcode.com/problems/sort-list/ Sort a linked list in O(n log n) time using constant space ...

  2. pod install安装第三方库异常

    使用pod install安装第三方插件时,可能会出现如下异常: Installing SDWebImage (3.7.3) [!] Error installing SDWebImage[!] /u ...

  3. eNSP——配置NAT

    原理: 实验案例: 拓扑图: 实验编址: 1.基本配置 根据实验编址进行基本配置,并测试连通性. 2.配置静态NAT 公司在网关路由器R1上配置访问外网的默认路由. 需要在网关路由器R1上配置NAT地 ...

  4. 如何写出优美的 C 代码 面向对象的 C

    基础知识 结构体 除了提供基本数据类型外,C 语言还提供给用户自己定制数据类型的能力,那就是结构体,在 C 语言中,你可以用结构体来表示任何实体.结构体正是面向对象语言中的类的概念的雏形,比如: ty ...

  5. [转载]Oracle触发器详解

    转载自http://blog.csdn.net/indexman/article/details/8023740/ 触发器是许多关系数据库系统都提供的一项技术.在oracle系统里,触发器类似过程和函 ...

  6. for i in range()

    for i in range()就是python中的循环语句 有以下三种常见用法: 1.range(3) [0,3)即0,1,2 2.range(1,3) [1,3)即1,2 3.range(1,5, ...

  7. ASP.NET请求过程-Module

    管道模型     上图中为Http请求在Asp.net程序中处理的过程.管道处理模型来自上面的HttpApplication,管道处理模型其实就是多个Module(其实这些module都是在往http ...

  8. Python复习笔记02

    语句表达式: 在Python中支持遍历循环的对象:可迭代器对象,支持迭代协议的对象 比如列表list没有迭代功能只是可迭代对象 迭代:迭代协议 --> 例:f.__next__() 属于f的迭代 ...

  9. 插入排序——C语言

    插入排序 插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法.它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入.  (每步将一个待 ...

  10. 【数据结构】P1981 表达式求值

    题目描述 给定一个只包含加法和乘法的算术表达式,请你编程计算表达式的值. 输入格式 一行,为需要你计算的表达式,表达式中只包含数字.加法运算符“++”和乘法运算符“×”,且没有括号,所有参与运算的数字 ...