The Bottom of a Graph-POJ2553强连通
The Bottom of a Graph
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 9759 Accepted: 4053
Description
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,…,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,…,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,…,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,…,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
Sample Input
3 3
1 3 2 3 3 1
2 1
1 2
0
Sample Output
1 3
2
Source
Ulm Local 2003
题意:使用的图论的方式说明了一个新的定义,汇点的定义,v是图中的一个顶点,对于图中的每一个顶点w,如果v可达w并且w也可达v,ze称v为汇点。图的底部为图的子集,子集中的所有的点都是汇点,求图的底部。
思路:如果图的底部都是汇点,则说明底部中的任意两点都互相可达,则底部为强连通分量,并且这个集合不与外部相连即从这个集合不能到达其他的集合,所以任务就变成求图的强连通分量并且出度为零
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <set>
#include <vector>
#include <algorithm>
using namespace std;
const int Max = 5010;
typedef struct node
{
int v;
int next;
}Line;
Line Li[Max*1000];
int Head[Max],top;
int dfn[Max],low[Max],pre[Max],dep;
vector<int>G[Max];
int a[Max],num,Du[Max],Num;
bool vis[Max];
stack <int> S;
int n,m;
void AddEdge(int u,int v)
{
Li[top].v = v; Li[top].next = Head[u];
Head[u] = top++;
}
void Tarjan(int u) // Tarjan求强连通分量
{
dfn[u]=low[u]=dep++;
S.push(u);
for(int i=Head[u];i!=-1;i=Li[i].next)
{
if(dfn[Li[i].v]==-1)
{
Tarjan(Li[i].v);
low[u] = min(low[u],low[Li[i].v]);
}
else
{
low[u]=min(low[u],dfn[Li[i].v]);
}
}
if(low[u]==dfn[u])// 如果low[u]=dfn[u],则说明是强连通分的根节点
{
while(!S.empty())
{
int v = S.top();
S.pop();
G[Num].push_back(v);
pre[v]=Num;
if(v==u)
{
break;
}
}
Num++;
}
}
int main()
{
int u, v;
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
top = 0;
memset(Head,-1,sizeof(Head));
for(int i=0;i<m;i++)
{
scanf("%d %d",&u,&v);
AddEdge(u,v);
}
memset(dfn,-1,sizeof(dfn));
for(int i=0;i<=n;i++)
{
G[i].clear();
}
dep = 0;Num = 0;
for(int i=1;i<=n;i++)
{
if(dfn[i]==-1)
{
Tarjan(i);
}
}
memset(Du,0,sizeof(Du));
for(int i=0;i<Num;i++)
{
memset(vis,false,sizeof(vis));
for(int k=0;k<G[i].size();k++)
{
for(int j=Head[G[i][k]];j!=-1;j = Li[j].next)
{
if(i != pre[Li[j].v]&&!vis[pre[Li[j].v]])//集合间度的计算
{
vis[pre[Li[j].v]]=true;
Du[i]++;
}
}
}
}
num = 0;
for(int i=0;i<Num;i++)
{
if(Du[i]==0)
{
for(int j=0;j<G[i].size();j++)
{
a[num++]=G[i][j];
}
}
}
sort(a,a+num);// 排序输出
for(int i=0;i<num;i++)
{
if(i)
{
printf(" ");
}
printf("%d",a[i]);
}
printf("\n");
}
return 0;
}
The Bottom of a Graph-POJ2553强连通的更多相关文章
- POJ 2553 The Bottom of a Graph(强连通分量)
POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...
- poj 2553 The Bottom of a Graph【强连通分量求汇点个数】
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: ...
- POJ2553 The Bottom of a Graph(强连通分量+缩点)
题目是问,一个有向图有多少个点v满足∀w∈V:(v→w)⇒(w→v). 把图的强连通分量缩点,那么答案显然就是所有出度为0的点. 用Tarjan找强连通分量: #include<cstdio&g ...
- [poj 2553]The Bottom of a Graph[Tarjan强连通分量]
题意: 求出度为0的强连通分量. 思路: 缩点 具体有两种实现: 1.遍历所有边, 边的两端点不在同一强连通分量的话, 将出发点所在强连通分量出度+1. #include <cstdio> ...
- poj 2553 The Bottom of a Graph(强连通、缩点、出入度)
题意:给出一个有向图G,寻找所有的sink点.“sink”的定义为:{v∈V|∀w∈V:(v→w)⇒(w→v)},对于一个点v,所有能到达的所有节点w,都能够回到v,这样的点v称为sink. 分析:由 ...
- POJ 2553 The Bottom of a Graph(强连通分量的出度)
题意: 求出图中所有汇点 定义:点v是汇点须满足 --- 对图中任意点u,若v可以到达u则必有u到v的路径:若v不可以到达u,则u到v的路径可有可无. 模板:http://www.cnblogs.co ...
- POJ-2552-The Bottom of a Graph 强连通分量
链接: https://vjudge.net/problem/POJ-2553 题意: We will use the following (standard) definitions from gr ...
- poj 2553 The Bottom of a Graph(强连通分量+缩点)
题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K ...
- poj2553 强连通缩点
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 10114 Accepted: ...
- The Bottom of a Graph(tarjan + 缩点)
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9139 Accepted: ...
随机推荐
- win7 将所有 视图 改为 '详细信息'
1.随便进入某个文件夹->(菜单栏中)查看->选'详细信息' 2.(菜单栏中)工具->文件夹选项->查看->'应用到文件夹'
- DNS解析流程
DNS简单来说就是进行域名和IP的转换,那该如何转换呢?既然要转换,肯定有转换表,那表应该存 哪个服务器上,怎样去请求域名服务器来进行转换,所以,这个转换的过程都是什么.而面试的时 经常会有这道题:当 ...
- addChildViewController后开启热点/wifi/打电话引起的子vc的布局问题
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Menlo; color: #00b1ff } p.p2 { margin: 0.0px 0. ...
- jvm性能监控与故障处理工具
jdk为我们提供了一系列的jvm性能监控和故障处理工具,在这里根据学习进度进行整理记录.便于之后查阅 1.jps 虚拟机进程工具 类似于Linux系统中的ps命令,用于查看虚拟机进程,常用的有以下功 ...
- test [ ] 四类
test可理解的表达式类型分为四类: 表达式判断 字符串比较 数字比较 文件比较 test xxx 可以简写成 [ xxx ] 的形式,注意两端的空格. 1)判 ...
- 英康手机订单系统APP使用说明
1.登陆手机APP 输入卖家提供的账号和密码登陆APP. 2.商品购买列表 可以在全部商品.促销商品.收藏商品.最近订购.再次购买等几种商品列表下把商品加入购物车: 3.加入商品到购物车 点击商品列表 ...
- 用python实现计算1-2*((60-30+(-40/5)*(9-2*5/3+7/3*99/4*2998+10*568/14))-(-4*3)/(16-3*2))类似的公式计算
作业需求: 开发一个简单的python计算器 1.实现加减乘除及拓号优先级解析 2.用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 ...
- 电脑文件出现“windows-文件发生意外问题-可修复(严禁修改)-错误代码0X00000BF8”错误,怎么办
电脑文件出现"windows-文件发生意外问题-可修复(严禁修改)-错误代码0X00000BF8"错误,怎么办 下载一个"纵情文件修复器"修复一下就可以了 下载 ...
- R12.2 URL Validation failed. The error could have been caused through the use of the browser's navigation buttons
EBS升级到R12.2.4后,进入系统操作老是报以下错误: 通过谷歌发现有人遇到相同的问题,并提供了解决方案. 原文地址:http://onlineappsdbaoracle.blogspot.com ...
- c#项目架构搭建经验
读过.Net项目中感觉代码写的不错(备注1)有:bbsMax(可惜唧唧喳喳鸟像消失了一样),Umbraco(国外开源的cms项目),Kooboo(国内做开源cms).本人狭隘,读的代码不多,范围也不广 ...