欢迎访问~原文出处——博客园-zhouzhendong

去博客园看该题解


题目传送门 - PowerOJ1740 - 有SPJ - 推荐

题目传送门 - CodeVS1905 - 无SPJ - 0% 通过率(可以用来看题目)


题意概括

  有n支队伍,m个组。第i支队伍有a[i]个人,第i个组最多可以有b[i]个人。

  现在要求任何两个同队队员不可位于同一组,求是否有方案满足。

  输出第一行,表示是否有,如果有,是1,没有的话,输出0;

  如果有,接下来n行,第i行a[i]个数,表示第i支队伍的每个人被安排的组号。

  有SPJ,只要输出任意一种方案即可。


题解

  其实就是一个网络流的水题。

  前置技能 - 网络流(传送门)

  对于n支队伍,每只队伍一个点;对于m个组(餐桌),每个组一个点。

  另外地,建立一个源点和一个汇点。

  连接源点和队伍点,对于队伍i,该边的容量为a[i];

  连接每一个组的点和汇点,对于组i,该边的容量为b[i];

  对于每一个队伍,向每个组连一条边,容量为1。

  那么图就构建完了。

  至于证明,不解释了。

  然后跑一跑最大流,就算出了最大匹配数。

  其实,我们可以发现,这是一个二分图多重匹配问题。

  如果无法全部匹配,则输出0,

  否则输出1,再考虑。

  然后对于连接二分图左右两端的边,如果容量为1,那么这条边就是被选择的,那么该边所连接的两个节点,“队伍点”对应“组点”,然后这样就可以把所有的匹配全部还原。

  具体操作见代码。


代码

#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
const int N=,M=N*N,Inf=<<;
struct Edge{int x,y,cap,flow,nxt,flag;};
struct Graph{
int cnt,s,t,n,fst[N],dist[N],cur[N],num[N],p[N],head,tail,q[N];
Edge e[M];
void set(int S,int T,int nn){
s=S,t=T,n=nn,cnt=,memset(fst,,sizeof fst);
}
void add(int a,int b,int c,int d){
e[++cnt].x=a,e[cnt].y=b,e[cnt].cap=c,e[cnt].flow=,e[cnt].flag=d,e[cnt].nxt=fst[a],fst[a]=cnt;
e[++cnt].x=b,e[cnt].y=a,e[cnt].cap=,e[cnt].flow=,e[cnt].flag=,e[cnt].nxt=fst[b],fst[b]=cnt;
}
void re_bfs(){
memset(dist,-,sizeof dist);
memset(q,,sizeof q);
head=tail=dist[t]=;
q[++tail]=t;
while (head<tail)
for (int x=q[++head],i=fst[x];i;i=e[i].nxt)
if (e[i].cap==&&dist[e[i].y]==-)
dist[q[++tail]=e[i].y]=dist[x]+;
for (int i=;i<=n;i++)
if (dist[i]==-)
dist[i]=n;
}
int Augment(int &point){
int ex_Flow=Inf;
for (int i=t;i!=s;i=e[p[i]].x)
if (ex_Flow>=e[p[i]].cap-e[p[i]].flow)
ex_Flow=e[p[i]].cap-e[p[i]].flow,point=e[p[i]].x;
for (int i=t;i!=s;i=e[p[i]].x)
e[p[i]].flow+=ex_Flow,e[p[i]^].flow-=ex_Flow;
return ex_Flow;
}
int SAP(){
int x=s,y,MaxFlow=;
memset(num,,sizeof num);
for (int i=;i<=n;i++)
num[dist[i]]++,cur[i]=fst[i];
while (dist[s]<=n){
if (x==t){
MaxFlow+=Augment(x);
continue;
}
bool found=;
for (int i=cur[x];i!=&&!found;i=e[i].nxt)
if (dist[e[i].y]+==dist[x]&&e[i].cap>e[i].flow)
cur[x]=p[e[i].y]=i,x=e[i].y,found=;
if (found)
continue;
int d=n+;
for (int i=fst[x];i;i=e[i].nxt)
if (e[i].cap>e[i].flow)
d=min(d,dist[e[i].y]+);
if (!(--num[dist[x]]))
return MaxFlow;
num[dist[x]=d]++,cur[x]=fst[x];
if (x!=s)
x=e[p[x]].x;
}
return MaxFlow;
}
}g;
int n,m,a[N],b[N],sum=,mat[N][N];
int main(){
scanf("%d%d",&n,&m);
g.set(n+m+,n+m+,n+m+);
for (int i=;i<=n;i++)
scanf("%d",&a[i]),sum+=a[i],g.add(g.s,i,a[i],);
for (int i=;i<=m;i++)
scanf("%d",&b[i]),g.add(i+n,g.t,b[i],);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
g.add(i,j+n,,);
g.re_bfs();
int Flow=g.SAP();
puts(Flow<sum?"":"");
if (Flow<sum)
return ;
memset(mat,,sizeof mat);
for (int i=;i<=g.cnt;i++)
if (g.e[i].flag==&&g.e[i].cap==&&g.e[i].flow==){
int x=g.e[i].x,y=g.e[i].y-n;
mat[x][++mat[x][]]=y;
}
for (int i=;i<=n;i++)
sort(mat[i]+,mat[i]+mat[i][]+);
for (int i=;i<=n;puts(""),i++)
for (int j=;j<=mat[i][];j++)
printf("%d ",mat[i][j]);
return ;
}

网络流24题 第五题 - PowerOJ1740 CodeVS1905 圆桌问题 二分图多重匹配 网络最大流的更多相关文章

  1. 【网络流24题】No.7 试题库问题 (最大流,二分图多重匹配)

    [题意] 假设一个试题库中有 n 道试题. 每道试题都标明了所属类别. 同一道题可能有多个类别属性.现要从题库中抽取 m 道题组成试卷.并要求试卷包含指定类型的试题. 试设计一个满足要求的组卷算法. ...

  2. hihoCoder 1393 网络流三·二分图多重匹配(Dinic求二分图最大多重匹配)

    #1393 : 网络流三·二分图多重匹配 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 学校的秋季运动会即将开始,为了决定参赛人员,各个班又开始忙碌起来. 小Hi和小H ...

  3. hiho 第117周 二分图多重匹配,网络流解决

    描述 学校的秋季运动会即将开始,为了决定参赛人员,各个班又开始忙碌起来. 小Hi和小Ho作为班上的班干部,统计分配比赛选手的重任也自然交到了他们手上. 已知小Hi和小Ho所在的班级一共有N名学生(包含 ...

  4. HDU 5352——MZL's City——————【二分图多重匹配、拆点||网络流||费用流】

    MZL's City Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  5. 网络流24(san)题题解汇总

    开坑(烂尾预定 1.餐巾计划问题 题解 2.最小路径覆盖问题 题解 3.试题库问题 题解 4.[CTSC1999]家园 题解 5.骑士共存问题 题解 6.最长不下降子序列问题 题解 7.深海机器人问题 ...

  6. 【网络流24题】 No.5 圆桌问题 (多重匹配)

    [题意] 假设有来自 n 个不同单位的代表参加一次国 际会议.每个单位的代表数分别为r i ni , = 1,2, .会议餐厅共有 m 张餐桌,每张餐桌可容纳 ci (i = 1,2, , m) 个 ...

  7. 查找最小的k个元素 【微软面试100题 第五题】

    题目要求: 输入n个整数,输出其中最小的k个. 例如:输入1,2,3,4,5,6,7,8这8个数字,则最小的4个数字为1,2,3,4. 参考资料:剑指offer第30题. 题目分析: 解法一: 用快排 ...

  8. [HIHO1393]网络流三·二分图多重匹配

    题目链接:http://hihocoder.com/problemset/problem/1393 把项目到汇点的边权值都加起来,跑完最大流后看是否最大流=权值和.如果等于权值和说明所有项目都有足够的 ...

  9. POJ3189_Steady Cow Assignment(二分图多重匹配/网络流+二分构图)

    解题报告 http://blog.csdn.net/juncoder/article/details/38340447 题目传送门 题意: B个猪圈,N头猪.每头猪对每一个猪圈有一个惬意值.要求安排这 ...

随机推荐

  1. MSVCR120.dll丢失问题

    一.问题:丢失MSVCR120.dll 二.解决方法 到官网下载vcredist_x86.exe安装即可 地址:https://www.microsoft.com/en-us/download/det ...

  2. FineReport: 清空(重置)条件reset()

    在使用控件时,有时我们希望能够快捷的重置控件的内容,或者重置所有控件的内容,效果如下图所示: 1.给需要重置的控件设置控件名 2.给重置按钮设置点击事件 3.点击事件中加入javascript代码 只 ...

  3. 【文件】使用jacob将word转换成pdf格式

    使用jacob将word转换成pdf格式   1.需要安装word2007或以上版本,若安装07版本学确保该版本已安装2downbank0204MicrosoftSaveasPDF_ XPS,否则安装 ...

  4. 变量,id()

    >>> a = 1 >>> print id(a) 2870961640 >>> b = a >>> print id(b) 2 ...

  5. python - class类 (二) 静态属性/类方法/静态方法

    静态属性: #静态属性 = 数据属性 (@property) class mianji(): def __init__(self,x,y): self.x = x self.y = y #类的函数方法 ...

  6. mac系统在配置navicat时连接数据的时候提示can't connect to mysql server on '127.0.0.1'

          新建数据库连接的时候,将默认的端口号更改掉,改为3307,即可解决这个问题. 具体是为什么我也不清楚,我自己想的一个可能就是mac电脑 上的某个程序可能已经占用了3306那个默认的端口,因 ...

  7. Java读取Excel文件转换成JSON并转成List——(七)

    Jar包

  8. maven名词解释

    Maven名词解释 Project:任何你想build的事物,Maven都可以认为它们是工程.这些工程被定义为工程对象模型(POM,Poject Object Model).一个工程可以依赖其它的工程 ...

  9. centos系统设置通过windows代理上网

    网络环境说明: 物理机windows xp sp3系统 ip:192.168.29.21(通过路由上网,有权限设置proxy给其他机器代理上网) 虚拟机centos5.5系统 ip:192.168.2 ...

  10. cacti系列(一)之cacti的安装及配置监控mysql服务

    简介 Cacti是通过 snmpget来获取数据,使用 RRDtool绘画图形,而且你完全可以不需要了解RRDtool复杂的参数.它提供了非常强大的数据和用户管理功能,可以指定每一个用户能查看树状结构 ...