BZOJ 1853: [Scoi2010]幸运数字
1853: [Scoi2010]幸运数字
Time Limit: 2 Sec Memory Limit: 64 MB
Submit: 2117 Solved: 779
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 10
【样例输入2】
1234 4321
Sample Output
2
【样例输出2】
809
HINT
【数据范围】
对于30%的数据,保证1 < =a < =b < =1000000
对于100%的数据,保证1 < =a < =b < =10000000000
Source
分析
不难想到用容斥原理来统计。
先预处理出所有小于1e10的幸运数字,并不是很多。但是发现枚举所有的组合还是会爆炸的,需要一些剪枝。
1. 对于两个幸运数字,x<y,如果有y为x的倍数,则y可以忽略,因为x可以完全覆盖y的倍数。
2. 对于一种组合,如果目前的积已经大于N,即再进行下去得到的都是加减0的无意义操作,可以直接跳出。
3. 可以把GCD函数写成非递归的形式,但貌似没多大用,跑出来的结果差距不是很大,也许是我写得不好。
4. 枚举的时候从大往小枚举,据说有奇效,因为懒癌晚期,我并没有对比验证。
代码
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int N = ; const LL lim = 10000000000LL; template <class T>
__inline void read(T &x)
{
x = ; char c = getchar(); while (c < '')
c = getchar(); while (c >= '')
{
x = x* + c - '';
c = getchar();
}
} LL gcd(LL a, LL b)
{
if (a < b)
{
a ^= b;
b ^= a;
a ^= b;
}
while (b)
{
a %= b;
a ^= b;
b ^= a;
a ^= b;
}
return a;
} LL num[N]; int tot = ; __inline void prework(void)
{
int t, tail = ; for (t = ; num[t] <= lim; ++t)
{
num[++tail] = num[t] * + ;
num[++tail] = num[t] * + ;
} for (int i = ; i <= t; ++i)
{
bool flag = true;
for (int j = ; j <= tot; ++j)
if (num[i] % num[j] == )
{ flag = false; break; }
if (flag)num[++tot] = num[i];
}
} LL answer, limit; void search(int t, bool f, LL sum)
{
if (t)
{
search(t - , f, sum); LL GCD = gcd(num[t], sum); if (sum / GCD <= limit / num[t])
{
LL LCM = sum / GCD * num[t]; if (f)
answer -= limit / LCM;
else
answer += limit / LCM; search(t - , !f, LCM);
}
}
} __inline LL count(LL n)
{
limit = n;
answer = ; int pos = ; while (pos <= tot
&& num[pos] <= n)++pos; search(pos - , , ); return answer;
} signed main(void)
{
prework(); LL a; read(a);
LL b; read(b); printf("%lld\n",
count(b)
- count(a - )
);
}
BZOJ_1853.cpp
@Author: YouSiki
BZOJ 1853: [Scoi2010]幸运数字的更多相关文章
- Bzoj 1853: [Scoi2010]幸运数字 容斥原理,深搜
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 1774 Solved: 644[Submit][Status] ...
- bzoj 1853: [Scoi2010]幸运数字 容斥
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 1170 Solved: 406[Submit][Status] ...
- BZOJ 1853: [Scoi2010]幸运数字(容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1853 题意: 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运 ...
- bzoj 1853: [Scoi2010]幸运数字&&2393: Cirno的完美算数教室【容斥原理】
翻了一些blog,只有我用状压预处理嘛2333,.把二进制位的0当成6,1当成8就行啦.(2393是2和9 然后\( dfs \)容斥,加上一个数的\( lcm \),减去两个数的\( lcm \), ...
- ●BZOJ 1853 [Scoi2010]幸运数字
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1853 题解: 容斥原理,暴力搜索,剪枝(这剪枝剪得真玄学) 首先容易发现,幸运号码不超过 2 ...
- 【BZOJ 1853】 1853: [Scoi2010]幸运数字 (容斥原理)
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 2472 Solved: 911 Description 在中国 ...
- 1853: [Scoi2010]幸运数字[容斥原理]
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 2405 Solved: 887[Submit][Status] ...
- BZOJ2393 & 1853 [Scoi2010]幸运数字 【搜索 + 容斥】
题目 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是" ...
- AC日记——[SCOI2010]幸运数字 bzoj 1853
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 2405 Solved: 887[Submit][Status] ...
随机推荐
- slice,substr和substring的区别
首先,他们都接收两个参数,slice和substring接收的是起始位置和结束位置(不包括结束位置),而substr接收的则是起始位置和所要返回的字符串长度.直接看下面例子: var test = ' ...
- Centos下Apache使用Symlink访问外部目录出现403
在Aapche 的document root 下创建软链到其他目录时, 无法从浏览器访问, 返回403错误. 主要检查两点: 1. 软链目标目录的每一级, 都要对所有人开放执行权限, 即对各级目录 c ...
- Java GC回收机制
优秀Java程序员必须了解的GC工作原理 一个优秀的Java程序员必须了解GC的工作原理.如何优化GC的性能.如何与GC进行有限的交互,因为有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只 ...
- scala 学习笔记(07) 一等公民的函数
在scala中一切皆对象,一切皆函数,函数跟Int,String.Class等其它类型是处于同等的地位,换句话说,使用函数跟使用普通的类型一样,没什么区别,因此: 1.函数可以赋值给变量,可以当参数传 ...
- struts2使用Convention Plugin在weblogic上以war包部署时,找不到Action的解决办法
环境: struts 2.3.16.3 + Convention Plugin 2.3.16.3 实现零配置 现象:以文件夹方式部署在weblogic(10.3.3)上时一切正常,换成war包部署,运 ...
- java: ant 脚本示例
<?xml version="1.0" encoding="UTF-8"?> <!--basedir是从build.xml所在的目录为基础算起 ...
- 通向高可扩展性之路(WhatsApp篇)---- 脸书花了190亿买来的WhatsApp的架构
原文链接:http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-bill ...
- Android实现滑动刻度尺效果,选择身高体重和生日
刻度尺效果虽然看起来很美,我个人认为很不实用,即使再不实用,也有用的,鉴于群里成员对我的苦苦哀求,我就分享一个他用不到的,横屏滑动刻度尺,因为他需要竖屏的,哈哈…… 最近群里的开发人员咨询怎样实现刻度 ...
- 关于Hellas和Greece
一直以来我就好奇,为什么希腊的中文名字“希腊”和英文名字”Greece”听起来都不像(就像“德国”不像“Germany”一样),而且,为什么在很多体育比赛中看到希腊运动员的衣服上都是“Hellas”, ...
- TRUNK的作用功能.什么是TRUNK
TRUNK的作用功能.什么是TRUNK(转) [复制链接] 发表于 2011-11-24 11:01 | 来自 51CTO网页 在技术领域中把TRUNK翻译为中文是“主干.干线.中继线.长途线 ...