import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 定义RNN的参数。
HIDDEN_SIZE = 30 # LSTM中隐藏节点的个数。
NUM_LAYERS = 2 # LSTM的层数。
TIMESTEPS = 10 # 循环神经网络的训练序列长度。
TRAINING_STEPS = 10000 # 训练轮数。
BATCH_SIZE = 32 # batch大小。
TRAINING_EXAMPLES = 10000 # 训练数据个数。
TESTING_EXAMPLES = 1000 # 测试数据个数。
SAMPLE_GAP = 0.01 # 采样间隔。
# 产生正弦数据。
def generate_data(seq):
X = []
y = []
# 序列的第i项和后面的TIMESTEPS-1项合在一起作为输入;第i + TIMESTEPS项作为输
# 出。即用sin函数前面的TIMESTEPS个点的信息,预测第i + TIMESTEPS个点的函数值。
for i in range(len(seq) - TIMESTEPS):
X.append([seq[i: i + TIMESTEPS]])
y.append([seq[i + TIMESTEPS]])
return np.array(X, dtype=np.float32), np.array(y, dtype=np.float32) # 用正弦函数生成训练和测试数据集合。
test_start = (TRAINING_EXAMPLES + TIMESTEPS) * SAMPLE_GAP
test_end = test_start + (TESTING_EXAMPLES + TIMESTEPS) * SAMPLE_GAP
train_X, train_y = generate_data(np.sin(np.linspace(0, test_start, TRAINING_EXAMPLES + TIMESTEPS, dtype=np.float32)))
test_X, test_y = generate_data(np.sin(np.linspace(test_start, test_end, TESTING_EXAMPLES + TIMESTEPS, dtype=np.float32)))
#  定义网络结构和优化步骤。
def lstm_model(X, y, is_training):
# 使用多层的LSTM结构。
cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE) for _ in range(NUM_LAYERS)]) # 使用TensorFlow接口将多层的LSTM结构连接成RNN网络并计算其前向传播结果。
outputs, _ = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
output = outputs[:, -1, :] # 对LSTM网络的输出再做加一层全链接层并计算损失。注意这里默认的损失为平均
# 平方差损失函数。
predictions = tf.contrib.layers.fully_connected(output, 1, activation_fn=None) # 只在训练时计算损失函数和优化步骤。测试时直接返回预测结果。
if not is_training:
return predictions, None, None # 计算损失函数。
loss = tf.losses.mean_squared_error(labels=y, predictions=predictions) # 创建模型优化器并得到优化步骤。
train_op = tf.contrib.layers.optimize_loss(loss, tf.train.get_global_step(),optimizer="Adagrad", learning_rate=0.1)
return predictions, loss, train_op
# 定义测试方法。
def run_eval(sess, test_X, test_y):
# 将测试数据以数据集的方式提供给计算图。
ds = tf.data.Dataset.from_tensor_slices((test_X, test_y))
ds = ds.batch(1)
X, y = ds.make_one_shot_iterator().get_next() # 调用模型得到计算结果。这里不需要输入真实的y值。
with tf.variable_scope("model", reuse=True):
prediction, _, _ = lstm_model(X, [0.0], False) # 将预测结果存入一个数组。
predictions = []
labels = []
for i in range(TESTING_EXAMPLES):
p, l = sess.run([prediction, y])
predictions.append(p)
labels.append(l) # 计算rmse作为评价指标。
predictions = np.array(predictions).squeeze()
labels = np.array(labels).squeeze()
rmse = np.sqrt(((predictions - labels) ** 2).mean(axis=0))
print("Root Mean Square Error is: %f" % rmse) #对预测的sin函数曲线进行绘图。
plt.figure()
plt.plot(predictions, label='predictions')
plt.plot(labels, label='real_sin')
plt.legend()
plt.show()
#  执行训练和测试。
# 将训练数据以数据集的方式提供给计算图。
ds = tf.data.Dataset.from_tensor_slices((train_X, train_y))
ds = ds.repeat().shuffle(1000).batch(BATCH_SIZE)
X, y = ds.make_one_shot_iterator().get_next() # 定义模型,得到预测结果、损失函数,和训练操作。
with tf.variable_scope("model"):
_, loss, train_op = lstm_model(X, y, True) with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 测试在训练之前的模型效果。
print("Evaluate model before training.")
run_eval(sess, test_X, test_y) # 训练模型。
for i in range(TRAINING_STEPS):
_, l = sess.run([train_op, loss])
if i % 1000 == 0:
print("train step: " + str(i) + ", loss: " + str(l)) # 使用训练好的模型对测试数据进行预测。
print("Evaluate model after training.")
run_eval(sess, test_X, test_y)

吴裕雄--天生自然 pythonTensorFlow图形数据处理:循环神经网络预测正弦函数的更多相关文章

  1. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集高层操作

    import tempfile import tensorflow as tf # 1. 列举输入文件. # 输入数据生成的训练和测试数据. train_files = tf.train.match_ ...

  2. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入数据处理框架

    import tensorflow as tf # 1. 创建文件列表,通过文件列表创建输入文件队列 files = tf.train.match_filenames_once("F:\\o ...

  3. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集基本使用方法

    import tempfile import tensorflow as tf # 1. 从数组创建数据集. input_data = [1, 2, 3, 5, 8] dataset = tf.dat ...

  4. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入文件队列

    import tensorflow as tf # 1. 生成文件存储样例数据. def _int64_feature(value): return tf.train.Feature(int64_li ...

  5. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:多线程队列操作

    import tensorflow as tf #1. 定义队列及其操作. queue = tf.FIFOQueue(100,"float") enqueue_op = queue ...

  6. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:队列操作

    import tensorflow as tf #1. 创建队列,并操作里面的元素. q = tf.FIFOQueue(2, "int32") init = q.enqueue_m ...

  7. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:图像预处理完整样例

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #随机调整图片的色彩,定义两种顺序. def di ...

  8. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:TensorFlow图像处理函数

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #读取图片 image_raw_data = tf ...

  9. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:读取MNIST手写图片数据写入的TFRecord文件

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

随机推荐

  1. file:///D:/Program%20Files/Microsoft%20Visual%20Studio%2011.0/VC/VCWizards/CodeWiz/MFC/Variable/HTML

    title VS2005  VS2008添加变量,添加函数,添加类时弹出 Script Error  解决办法 问现象描述 : 问题大家都清楚了.不赘述 错误提示 :file:///C:/Progra ...

  2. Linux / MacOS 下Redis 安装、配置和连接

    下载 下载redis压缩包 最新的为 5.0.4 地址 http://download.redis.io/releases/redis-5.0.4.tar.gz 安装 1 解压 切换工作目录到redi ...

  3. 关于spring cloud “Finchley.RC2”版本在spring cloud config中的ArrayIndexOutOfBoundsException

    原文 https://www.cnblogs.com/Little-tree/p/9166382.html 在学spring cloud config的时候遇到一个ArrayIndexOutOfBou ...

  4. 十五、CI框架之自动加载数据库

    一.在config的autoload.php文件中,如果写入以下代码,那么在控制器中无需再次加载数据库了,相当于全局自动加载数据库了 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信二维码 ...

  5. docker创建redis容器

    1.拉取最新的redis镜像 docker pull redis; 2.创建存放redis数据的目录 mkdir /redis/data 3.查询redis镜像id docker images; RE ...

  6. 如何利用vue脚手架创建一个vue项目

    1.安装node.js 2.打开命令行查看下npm和node是否都安装好 node -v npm -v 3.安装淘宝镜像cnpm $ npm install -g cnpm --registry=ht ...

  7. zookeeper基础教程

    一.关于zookeeper Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储, Zookeeper 作用 ...

  8. openstack trove主要贡献公司-Tesora被Stratoscale收购

    新闻链接:http://www.stratoscale.com/press/press-releases/stratoscale-acquires-database-as-a-service-prov ...

  9. go 的参数传递

    再go语言中没有引用传递,所有都是按照值拷贝的方式传递的. 数组:实际就是堆栈上的一段连续内存,和c类似.(可以更加反编译代码推断 go tool compile -S main.go > ma ...

  10. JS-语句五

    for循环的实例 1.九九乘法表: 1*1  1*2  1*3        1*2  2*2  2*3        1*3  2*3  3*3        1*4  2*4  4*3       ...