import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 定义RNN的参数。
HIDDEN_SIZE = 30 # LSTM中隐藏节点的个数。
NUM_LAYERS = 2 # LSTM的层数。
TIMESTEPS = 10 # 循环神经网络的训练序列长度。
TRAINING_STEPS = 10000 # 训练轮数。
BATCH_SIZE = 32 # batch大小。
TRAINING_EXAMPLES = 10000 # 训练数据个数。
TESTING_EXAMPLES = 1000 # 测试数据个数。
SAMPLE_GAP = 0.01 # 采样间隔。
# 产生正弦数据。
def generate_data(seq):
X = []
y = []
# 序列的第i项和后面的TIMESTEPS-1项合在一起作为输入;第i + TIMESTEPS项作为输
# 出。即用sin函数前面的TIMESTEPS个点的信息,预测第i + TIMESTEPS个点的函数值。
for i in range(len(seq) - TIMESTEPS):
X.append([seq[i: i + TIMESTEPS]])
y.append([seq[i + TIMESTEPS]])
return np.array(X, dtype=np.float32), np.array(y, dtype=np.float32) # 用正弦函数生成训练和测试数据集合。
test_start = (TRAINING_EXAMPLES + TIMESTEPS) * SAMPLE_GAP
test_end = test_start + (TESTING_EXAMPLES + TIMESTEPS) * SAMPLE_GAP
train_X, train_y = generate_data(np.sin(np.linspace(0, test_start, TRAINING_EXAMPLES + TIMESTEPS, dtype=np.float32)))
test_X, test_y = generate_data(np.sin(np.linspace(test_start, test_end, TESTING_EXAMPLES + TIMESTEPS, dtype=np.float32)))
#  定义网络结构和优化步骤。
def lstm_model(X, y, is_training):
# 使用多层的LSTM结构。
cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE) for _ in range(NUM_LAYERS)]) # 使用TensorFlow接口将多层的LSTM结构连接成RNN网络并计算其前向传播结果。
outputs, _ = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
output = outputs[:, -1, :] # 对LSTM网络的输出再做加一层全链接层并计算损失。注意这里默认的损失为平均
# 平方差损失函数。
predictions = tf.contrib.layers.fully_connected(output, 1, activation_fn=None) # 只在训练时计算损失函数和优化步骤。测试时直接返回预测结果。
if not is_training:
return predictions, None, None # 计算损失函数。
loss = tf.losses.mean_squared_error(labels=y, predictions=predictions) # 创建模型优化器并得到优化步骤。
train_op = tf.contrib.layers.optimize_loss(loss, tf.train.get_global_step(),optimizer="Adagrad", learning_rate=0.1)
return predictions, loss, train_op
# 定义测试方法。
def run_eval(sess, test_X, test_y):
# 将测试数据以数据集的方式提供给计算图。
ds = tf.data.Dataset.from_tensor_slices((test_X, test_y))
ds = ds.batch(1)
X, y = ds.make_one_shot_iterator().get_next() # 调用模型得到计算结果。这里不需要输入真实的y值。
with tf.variable_scope("model", reuse=True):
prediction, _, _ = lstm_model(X, [0.0], False) # 将预测结果存入一个数组。
predictions = []
labels = []
for i in range(TESTING_EXAMPLES):
p, l = sess.run([prediction, y])
predictions.append(p)
labels.append(l) # 计算rmse作为评价指标。
predictions = np.array(predictions).squeeze()
labels = np.array(labels).squeeze()
rmse = np.sqrt(((predictions - labels) ** 2).mean(axis=0))
print("Root Mean Square Error is: %f" % rmse) #对预测的sin函数曲线进行绘图。
plt.figure()
plt.plot(predictions, label='predictions')
plt.plot(labels, label='real_sin')
plt.legend()
plt.show()
#  执行训练和测试。
# 将训练数据以数据集的方式提供给计算图。
ds = tf.data.Dataset.from_tensor_slices((train_X, train_y))
ds = ds.repeat().shuffle(1000).batch(BATCH_SIZE)
X, y = ds.make_one_shot_iterator().get_next() # 定义模型,得到预测结果、损失函数,和训练操作。
with tf.variable_scope("model"):
_, loss, train_op = lstm_model(X, y, True) with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 测试在训练之前的模型效果。
print("Evaluate model before training.")
run_eval(sess, test_X, test_y) # 训练模型。
for i in range(TRAINING_STEPS):
_, l = sess.run([train_op, loss])
if i % 1000 == 0:
print("train step: " + str(i) + ", loss: " + str(l)) # 使用训练好的模型对测试数据进行预测。
print("Evaluate model after training.")
run_eval(sess, test_X, test_y)

吴裕雄--天生自然 pythonTensorFlow图形数据处理:循环神经网络预测正弦函数的更多相关文章

  1. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集高层操作

    import tempfile import tensorflow as tf # 1. 列举输入文件. # 输入数据生成的训练和测试数据. train_files = tf.train.match_ ...

  2. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入数据处理框架

    import tensorflow as tf # 1. 创建文件列表,通过文件列表创建输入文件队列 files = tf.train.match_filenames_once("F:\\o ...

  3. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集基本使用方法

    import tempfile import tensorflow as tf # 1. 从数组创建数据集. input_data = [1, 2, 3, 5, 8] dataset = tf.dat ...

  4. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入文件队列

    import tensorflow as tf # 1. 生成文件存储样例数据. def _int64_feature(value): return tf.train.Feature(int64_li ...

  5. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:多线程队列操作

    import tensorflow as tf #1. 定义队列及其操作. queue = tf.FIFOQueue(100,"float") enqueue_op = queue ...

  6. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:队列操作

    import tensorflow as tf #1. 创建队列,并操作里面的元素. q = tf.FIFOQueue(2, "int32") init = q.enqueue_m ...

  7. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:图像预处理完整样例

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #随机调整图片的色彩,定义两种顺序. def di ...

  8. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:TensorFlow图像处理函数

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #读取图片 image_raw_data = tf ...

  9. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:读取MNIST手写图片数据写入的TFRecord文件

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

随机推荐

  1. Q3狂揽3亿美元净利润的特斯拉会让国内电动汽车厂商喜极而泣吗?

    作为电动汽车行业的标杆,特斯拉无疑是国内电动汽车厂商发展进程中重要的参考对象.而前段时间特斯拉身上出现的产能受阻.私有化风波.马斯克卸任董事长一职等事件,着实让国产电动汽车厂商惊出一身冷汗.毕竟如果特 ...

  2. 封装localStorage设置,获取,移除方法

    export const local = { set(key, value) { localStorage.setItem(key, JSON.stringify(value)); }, get(ke ...

  3. hibernate中save、update、saveOrUpdate的区别

    saveOrUpdate如果hibernate-mapping配置的主键已存在,就不会新增,会更新. ------------------------------------------------- ...

  4. list的泛型

    更新记录 [1]2020.02.12-21:26 1.完善内容 正文 在学习list集合时,我看到书上写list的格式时 List<E> list = new ArrayList<& ...

  5. DCGAN

    Deep Convolutional Generative Adversarial Networks we introduced the basic ideas behind how GANs wor ...

  6. Airflow 使用 Celery 时,如何添加 Celery 配置

    背景 前段时间我选用了 Airflow 对 wms 进行数据归档,在运行一段时间后,经常发现会报以下错误: [-- ::,: WARNING/ForkPoolWorker-] Failed opera ...

  7. 科学 multi port

    issues/679 create new UUID cat /proc/sys/kernel/random/uuid example config : multi port , multi user ...

  8. 实验吧web-易-拐弯抹角(url伪静态)

    <?php // code by SEC@USTC echo '<html><head><meta http-equiv="charset" c ...

  9. C#窗体与SQL数据库的连接

    /*通过C#winform程序访问数据库数据 用到的命名空间和变量类型: using System.Data.SqlClient; SqlConnection:数据库连接类 SqlCommand:数据 ...

  10. 深入理解C指针<一>

    指针和内存 C程序在编译后,会以三种形式使用内存: 静态.全局内存:静态变量和全局变量使用这部分内存,生存周期为整个程序运行时,全局变量所有函数都可以访问,但静态变量虽然生存周期为整个程序运行时,但作 ...