吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_regression():
'''
加载用于回归问题的数据集
'''
#使用 scikit-learn 自带的一个糖尿病病人的数据集
diabetes = datasets.load_diabetes()
# 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #集成学习随机森林RandomForestRegressor回归模型
def test_RandomForestRegressor(*data):
X_train,X_test,y_train,y_test=data
regr=ensemble.RandomForestRegressor()
regr.fit(X_train,y_train)
print("Traing Score:%f"%regr.score(X_train,y_train))
print("Testing Score:%f"%regr.score(X_test,y_test)) # 获取分类数据
X_train,X_test,y_train,y_test=load_data_regression()
# 调用 test_RandomForestRegressor
test_RandomForestRegressor(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_num(*data):
'''
测试 RandomForestRegressor 的预测性能随 n_estimators 参数的影响
'''
X_train,X_test,y_train,y_test=data
nums=np.arange(1,100,step=2)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for num in nums:
regr=ensemble.RandomForestRegressor(n_estimators=num)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(nums,training_scores,label="Training Score")
ax.plot(nums,testing_scores,label="Testing Score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(-1,1)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_num
test_RandomForestRegressor_num(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_max_depth(*data):
'''
测试 RandomForestRegressor 的预测性能随 max_depth 参数的影响
'''
X_train,X_test,y_train,y_test=data
maxdepths=range(1,20)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for max_depth in maxdepths:
regr=ensemble.RandomForestRegressor(max_depth=max_depth)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(maxdepths,training_scores,label="Training Score")
ax.plot(maxdepths,testing_scores,label="Testing Score")
ax.set_xlabel("max_depth")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_max_depth
test_RandomForestRegressor_max_depth(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_max_features(*data):
'''
测试 RandomForestRegressor 的预测性能随 max_features 参数的影响
'''
X_train,X_test,y_train,y_test=data
max_features=np.linspace(0.01,1.0)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for max_feature in max_features:
regr=ensemble.RandomForestRegressor(max_features=max_feature)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(max_features,training_scores,label="Training Score")
ax.plot(max_features,testing_scores,label="Testing Score")
ax.set_xlabel("max_feature")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_max_features
test_RandomForestRegressor_max_features(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型的更多相关文章
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 机器学习:集成学习:随机森林.GBDT
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...
- 吴裕雄 python 机器学习——伯努利贝叶斯BernoulliNB模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型
from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_Va ...
- 吴裕雄 python 机器学习——数据预处理字典学习模型
from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_Diction ...
随机推荐
- POJ1273【网络流】
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 91824 Accepted ...
- URL简介&HTTP协议
世界上任何一栋建筑必须有一个地址才能找到 互联网上任何一个资源必须有一个“URL”才能被访问 URL的完整格式: <scheme>://<user>:<pwd>@& ...
- [CF3B] Lorry - 贪心
有一辆载重量为 v 的货车, 准备运送两种物品. 物品 A 的重量为 1, 物体 B 的重量为 2, 每个物品都有一个价值. 求货车可以运送的物品的最大价值. Solution 考虑把物品分为两类,枚 ...
- chrome js报错Uncaught SyntaxError: Unexpected string
个人博客 地址:http://www.wenhaofan.com/article/20180912123136 js报错,最后发现是$(function(){})这部分()不完整 $(function ...
- Java基本语法--控制台输入(Scanner类)
通过Scanner类获取用户输入时,控制台会一直等待用户的输入,可以输入不同类型的值.本篇博客主要讲解从控制台输入值,即Scanner类的使用方法. Api文档中关于Scanner类的构造方法 键盘输 ...
- Python内置方法/函数
abs() 返回数字的绝对值. abs(x) all() 用于判断给定的可迭代参数 iterable 中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False. 元素除了是 0.空. ...
- 2018护网杯easy_tornado(SSTI tornado render模板注入)
考点:SSTI注入 原理: tornado render是python中的一个渲染函数,也就是一种模板,通过调用的参数不同,生成不同的网页,如果用户对render内容可控,不仅可以注入XSS代码,而且 ...
- cpu几核
import psutil def GetCpuInfo(): cpu_count = psutil.cpu_count(logical=False) #1代表单核CPU,2代表双核CPU xc_co ...
- 什么是kafka,怎么使用? (2) - 内含zookeeper等
zookeeper依赖于java https://baike.baidu.com/item/yum/2835771?fr=aladdin http://yum.baseurl.org/ 去yum官网下 ...
- python3练习100题——019
原题链接:http://www.runoob.com/python/python-exercise-example19.html 题目:一个数如果恰好等于它的因子之和,这个数就称为"完数&q ...