如果yes的话要输出所有情况,一开始觉得挺难,想了一下也没什么。

  每堆的个数^一下,答案不是0就是先取者必胜,那么对必胜态显然至少存在一种可能性使得当前局势变成必败的。只要任意选取一堆,把这堆的数目变成其他堆异或和即可,这样,它们异或一下就是0了(变成了必败态)。所以说,在这题就是,对任意一堆,变化以后的数目如果不大于这堆原来的数目,就是可能的第一次取的情况。代码如下:

 #include <stdio.h>
#include <algorithm>
using namespace std;
const int N = + ;
int a[N];
int main()
{
int n;
while(scanf("%d",&n)== && n)
{
int temp = ;
for(int i=;i<=n;i++) {scanf("%d",a+i);temp^=a[i];}
if(temp == )
{
puts("No");
continue;
}
else
{
puts("Yes");
for(int i=;i<=n;i++)
{
int other = a[i]^temp;
int x = other^;
if(x <= a[i])
{
printf("%d %d\n",a[i],x);
}
}
}
}
}

  同时,nim博弈转化成sg来理解也是没有问题的,每一堆的sg函数怎么计算的呢?显然对一堆,个数为n的话,因为可以取>=1的任意个数,所以n的后续态为0~n-1的连续整数,那么sg[n]=mex{sg[0],sg[1],...,sg[n-1]}。而sg[0]=0,sg[1]=mex{sg[0]}=mex{0}=1, sg[2]=mex{sg[0],sg[1]}=mex{0,1}=2... 因此可以递推得到sg[n]=n。所以根据sg胜利的条件是所有sg值相异或不为0,这正是nim博弈下胜利的条件。

HDU 2176 取(m堆)石子游戏 —— (Nim博弈)的更多相关文章

  1. HDU 2176 取(m堆)石子游戏(Nim)

    取(m堆)石子游戏 题意: Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,1 ...

  2. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  3. 杭电 2176 取(m堆)石子游戏(博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  4. HDU 2176 取(m堆)石子游戏 (尼姆博奕)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎 ...

  5. HDU 2176 取(m堆)石子游戏 && HDU1850 Being a Good Boy in Spring Festivaly

    HDU2176题意: m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子. 通过 SG定理 我们可以知道每一个数的SG值,等于这个数到达不了的前面数 ...

  6. hdu 2176 取(m堆)石子游戏 (裸Nim)

    题意: m堆石头,每堆石头个数:a[1]....a[m]. 每次只能在一堆里取,至少取一个. 最后没石子取者负. 先取者负输出NO,先取胜胜输出YES,然后输出先取者第1次取子的所有方法.如果从有a个 ...

  7. HDU 2176 取(m堆)石子游戏 尼姆博弈

    题目思路: 对于尼姆博弈我们知道:op=a[1]^a[2]--a[n],若op==0先手必败 一个简单的数学公式:若op=a^b 那么:op^b=a: 对于第i堆a[i],op^a[i]的值代表其余各 ...

  8. HDU 2176 取(m堆)石子游戏(尼姆博奕)

    nim基础博弈 #include<stdio.h> #include<iostream> #include<cstring> #include<queue&g ...

  9. HDU 2177 取(2堆)石子游戏

    取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

随机推荐

  1. OkHttp3 + retrofit2 封装

    0.下载文件 1.gradle 添加 compile 'com.squareup.retrofit2:retrofit:2.1.0'compile 'com.squareup.retrofit2:co ...

  2. mvc 登陆界面+后台代码

    上代码 前端+js(懒得分文件了) @{ ViewBag.Title = "MVC权限系统架构学习-登录"; Layout = "/Views/Shared/_LoadJ ...

  3. ELinq学习一

    ELinq安装:在Nuget控制台中输入:install-package ELinq一.ELinq与DLinq和EF的功能差异 二.数据库对照表 三.CRUD操作1.插入(Insert)(1)简单形式 ...

  4. Swagger学习(四、配置API文档的分组)

    完整示例 代码结构 运行效果 SwaggerConfig.class @Configuration //变成配置文件 @EnableSwagger2 //开启swagger2 public class ...

  5. Windows 下 nvm, node, npm 的下载、安装与配置

    主要解决的问题 下载安装完 nvm 和 node 后,缺失 npm 文件 执行 jasmine 等命令时提示「不是内部或外部命令...」及全局变量的设置 下载与安装 一.nvm github 下载地址 ...

  6. 很low的四位验证码实现

    <html> <head> <meta charset="utf-8"> </head> <body> <inpu ...

  7. python编程中常见错误

    python编程培训中常见错误最后,我想谈谈使用更多python函数(数据类型.函数.模块.类等)时可能遇到的问题.由于篇幅有限,我们试图将其简化,特别是一些高级概念.有关更多详细信息,请阅读学习py ...

  8. HTML给标题栏添加图标

    <link rel="icon" href="images/logo.icon" type="image/x-icon"> 也可 ...

  9. Android实习结束后的阶段性总结

    2015年4月14日即将实习结束,在过去的五六个月里,对于Android开发还是学到了很多,临走前将以前做的笔记整理一下,自己也再回顾一次.零散是必然的,也可能只是一小段代码片段,但都是曾经我在学An ...

  10. Jupyter安装和环境配置

    配置: 1. 命令行启动 jupyter notebook 2. 也可以Anaconda直接启动 3. 设置token,如下图所示,命令行中输入 jupyter notebook list C:\Us ...