论文笔记:Visual Question Answering as a Meta Learning Task
Visual Question Answering as a Meta Learning Task
ECCV 2018
2018-09-13 19:58:08
1. Introduction:
本文提出一种新的 VQA 思路,将 meta-learning 结合进来,通过支持集的形式(Support Set),让神经网络学会学习。
本文核心的技术贡献是:提供一种顶尖的 VQA模型到 meta-learning 的设定下。the resulting model 是一个深度神经网络,利用 dynamic parameters,也被称为 fast weights,依赖于 support set 在测试时决定的。
the resulting system 的一个能力是:学会产生完全新颖的答案(在 training data 中从未出现的回答)。另外一个能力是处理 rare answers 能力。因为 VQA 是严重的类别不均衡。
本文的贡献是:
1. 将 VQA 看做是 meta-learnig 的问题,在测试时,提供一个 support set 进行模仿;
2. 描述了一个神经网络结构 以及 训练过程,能够结合 meta-learning 的场景;
3. 能够产生新颖的答案。对于 rare answers 能够很好的处理,更好的采样效率;
2. VQA in a Meta Learning Setting :
1)传统的 VQA 模型:
Image I, Question Q, 答案集合 A;
2)拓展到meta-learning 应用场景下:
带有 support set S, the support set S can include novel examples S' provided at test time; S = T U S' ;
3. Proposed Model:
作者将 VQA 系统分为两个部分:第一个部分就是感知,the embedding part that encodes the input question and image;第二个部分就是,the classifier part that handles the reasoning and actural question answering;
3.1. 非线性映射 $f_{theta} (*)$ :
非线性映射的作用是:将问题/图像 h 的 embedding 映射到适合 classifier 的表示(is to map the embedding of the question/image h to a representation suitable for the following classifier)。
我们采用 paper 【34】的设置,利用 a gated hyperbolic tangent layer, 定义为:
其中,$\delta$ 是逻辑激活函数,W, W', b, b' 都是可学习的参数,圆圈代表了元素级相乘。我们将这些参数统一表达为 $\theta$,传统方法就是用 BP 算法以及 梯度下降的方法进行训练,这样他们得到的就是 static 的参数。而本文所提出的方法,在测试的时候,依赖于 the input h 以及 the available support set,自适应的进行参数的调整。具体的,我们利用 static parameter $\theta^s$,以及 测试时候的动态参数 $\theta^d$。其线性组合为: 其中,w 是学习权重的向量。动态权重 可以看做是根据输入 h,对 static weights 进行的调整(the dynamic weights can therefore be seen as an adjustment made to be the static ones depends on the input h)。
候选动态权重的集合,被保留在 associative memory M 中。该 memory 是一个关于 key/value pair 的集合(跟支持集一样大)。在测试的时候,我们从该 memory 中提取出合适的动态权重,通过 soft key matching:
其中,$d_{cos}$ 代表了余弦相似度函数。所以,我们得到的是一个加权的 sum,用的是 输入 h 和 memory keys $h_i^~$ 之间的相似度来加权 the memory values。
Mapping to Candidate Answers :
未完,待遇 。。。
==
论文笔记:Visual Question Answering as a Meta Learning Task的更多相关文章
- 论文阅读:Learning Visual Question Answering by Bootstrapping Hard Attention
Learning Visual Question Answering by Bootstrapping Hard Attention Google DeepMind ECCV-2018 2018 ...
- 【自然语言处理】--视觉问答(Visual Question Answering,VQA)从初始到应用
一.前述 视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务.这一任务的定义如下: A VQA system takes as inp ...
- Hierarchical Question-Image Co-Attention for Visual Question Answering
Hierarchical Question-Image Co-Attention for Visual Question Answering NIPS 2016 Paper: https://arxi ...
- Visual Question Answering with Memory-Augmented Networks
Visual Question Answering with Memory-Augmented Networks 2018-05-15 20:15:03 Motivation: 虽然 VQA 已经取得 ...
- Learning Conditioned Graph Structures for Interpretable Visual Question Answering
Learning Conditioned Graph Structures for Interpretable Visual Question Answering 2019-05-29 00:29:4 ...
- 论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...
- 论文笔记:Deep Attentive Tracking via Reciprocative Learning
Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主 ...
- 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...
- 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 2016.10.06 官方 ...
随机推荐
- ubuntu下搭建LAMP环境
本文参考:http://www.linuxdiyf.com/linux/21265.html 请支持原创. 步骤一:安装apache root@mrwang:~$ sudo apt install a ...
- vue v-for的数组改变导致页面不渲染解决方法
直接在数组里,改变数组来达到重新渲染页面的目的, 需要用push等数组方法, 或者$set(),或者给数组重新赋值,来改变数组引用地址 而是直接索引= <body> <div id= ...
- jquery 全选/取消全部
html /*主要按钮*/ <td><input type="checkbox" id="checkAllChange" /></ ...
- mui 卡片视图 遮罩蒙版
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- 我也来----xia bi bi 一下----微信小程序
工作刚到一阶段 就看了看微信小程序 自己做了个小dome 主要是为了让我女朋友能够学习做菜! 然而悲催的发现我根本没有App ID 不说快了 直接上图 个人感觉开发起来还是很简单的. 对着AP ...
- 通过ICE轻松部署WES7镜像
作者:雷志刚 转自:http://lzg-ad.blog.sohu.com/156323256.html 注:该文转自Happymy,感谢他的技术提供和分享. 本文适合的软件版本:CTP,RC 如果大 ...
- liunx系统问题总结
1.Unable to locate package错误 解决办法 :输入命令 sudo apt-get update,进行软件的更新
- iOS 线程安全--锁
一,前言 线程安全是iOS开发中避免了的话题,随着多线程的使用,对于资源的竞争以及数据的操作都可能存在风险,所以有必要在操作时保证线程安全. 二,为什么要使用锁? 由于一个进程中不可避免的存在多线程, ...
- python框架之Django(12)-认证系统之auth模块
我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能,这还真是个麻烦的事情呢. Django作为一个完美主义者的终极框 ...
- [js]函数的上级作用域,他的上级作用域就是谁,跟函数在哪执行的没什么关系.
函数的上级作用域,他的上级作用域就是谁,跟函数在哪执行的没什么关系. <script> //如何查找上级作用域? //看函数在哪个作用域下定义的,他的上级作用域就是谁. 跟函数在哪执行的没 ...