论文笔记:Visual Question Answering as a Meta Learning Task
Visual Question Answering as a Meta Learning Task
ECCV 2018
2018-09-13 19:58:08
1. Introduction:
本文提出一种新的 VQA 思路,将 meta-learning 结合进来,通过支持集的形式(Support Set),让神经网络学会学习。

本文核心的技术贡献是:提供一种顶尖的 VQA模型到 meta-learning 的设定下。the resulting model 是一个深度神经网络,利用 dynamic parameters,也被称为 fast weights,依赖于 support set 在测试时决定的。
the resulting system 的一个能力是:学会产生完全新颖的答案(在 training data 中从未出现的回答)。另外一个能力是处理 rare answers 能力。因为 VQA 是严重的类别不均衡。
本文的贡献是:
1. 将 VQA 看做是 meta-learnig 的问题,在测试时,提供一个 support set 进行模仿;
2. 描述了一个神经网络结构 以及 训练过程,能够结合 meta-learning 的场景;
3. 能够产生新颖的答案。对于 rare answers 能够很好的处理,更好的采样效率;

2. VQA in a Meta Learning Setting :
1)传统的 VQA 模型:
Image I, Question Q, 答案集合 A;
2)拓展到meta-learning 应用场景下:
带有 support set S, the support set S can include novel examples S' provided at test time; S = T U S' ;
3. Proposed Model:
作者将 VQA 系统分为两个部分:第一个部分就是感知,the embedding part that encodes the input question and image;第二个部分就是,the classifier part that handles the reasoning and actural question answering;
3.1. 非线性映射 $f_{theta} (*)$ :
非线性映射的作用是:将问题/图像 h 的 embedding 映射到适合 classifier 的表示(is to map the embedding of the question/image h to a representation suitable for the following classifier)。
我们采用 paper 【34】的设置,利用 a gated hyperbolic tangent layer, 定义为:

其中,$\delta$ 是逻辑激活函数,W, W', b, b' 都是可学习的参数,圆圈代表了元素级相乘。我们将这些参数统一表达为 $\theta$,传统方法就是用 BP 算法以及 梯度下降的方法进行训练,这样他们得到的就是 static 的参数。而本文所提出的方法,在测试的时候,依赖于 the input h 以及 the available support set,自适应的进行参数的调整。具体的,我们利用 static parameter $\theta^s$,以及 测试时候的动态参数 $\theta^d$。其线性组合为:
其中,w 是学习权重的向量。动态权重 可以看做是根据输入 h,对 static weights 进行的调整(the dynamic weights can therefore be seen as an adjustment made to be the static ones depends on the input h)。
候选动态权重的集合,被保留在 associative memory M 中。该 memory 是一个关于 key/value pair 的集合(跟支持集一样大)。在测试的时候,我们从该 memory 中提取出合适的动态权重,通过 soft key matching:

其中,$d_{cos}$ 代表了余弦相似度函数。所以,我们得到的是一个加权的 sum,用的是 输入 h 和 memory keys $h_i^~$ 之间的相似度来加权 the memory values。
Mapping to Candidate Answers :
未完,待遇 。。。
==
论文笔记:Visual Question Answering as a Meta Learning Task的更多相关文章
- 论文阅读:Learning Visual Question Answering by Bootstrapping Hard Attention
Learning Visual Question Answering by Bootstrapping Hard Attention Google DeepMind ECCV-2018 2018 ...
- 【自然语言处理】--视觉问答(Visual Question Answering,VQA)从初始到应用
一.前述 视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务.这一任务的定义如下: A VQA system takes as inp ...
- Hierarchical Question-Image Co-Attention for Visual Question Answering
Hierarchical Question-Image Co-Attention for Visual Question Answering NIPS 2016 Paper: https://arxi ...
- Visual Question Answering with Memory-Augmented Networks
Visual Question Answering with Memory-Augmented Networks 2018-05-15 20:15:03 Motivation: 虽然 VQA 已经取得 ...
- Learning Conditioned Graph Structures for Interpretable Visual Question Answering
Learning Conditioned Graph Structures for Interpretable Visual Question Answering 2019-05-29 00:29:4 ...
- 论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...
- 论文笔记:Deep Attentive Tracking via Reciprocative Learning
Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主 ...
- 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...
- 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 2016.10.06 官方 ...
随机推荐
- IniHelper
/// <summary> /// ini文件操作类 /// </summary> public class IniHelper { #region 动态链接库调用 /// & ...
- plupload多个实例,返回区分实例的返回
plupload多个实例很简单,但是麻烦的是,返回的时候没有明显标记区分input的id,好蛋疼 var uploader = new plupload.Uploader({ //实例化一个plupl ...
- vue computed的执行问题
1.在new Vue()的时候,vue\src\core\instance\index.js里面的_init()初始化各个功能 function Vue (options) { if (process ...
- servlet 执行顺序
public class TestServelt { public static void main(String[] args) { ChildServlet childServlet = new ...
- rocketMQ安装部署详细解析
近来研究了Apache开源项目rocketMQ(原为阿里项目),并在两台linux服务器上完成了部署,现在整理下,供大家参考学习. 一.简介rocketMQRocektMQ是阿里巴巴在2012年开源的 ...
- git常用操作命令使用说明
设置用户名和邮箱 git config --global user.email 'xxx' git config --global user.name 'xxx' 创建分支 git branch xx ...
- property 和 魔法方法
property和魔法方法 一.property 二.model,class,bases,mro 三.__doc__, __dict__,__call__,__item__,__len__,__str ...
- 流控制、FlowControl
这个选项基本上所有网卡都会有,但是叫法会有些差别,比如Realtek网卡叫做流控制,Intel网卡叫做流程控制,还有一些网卡选项干脆是英文的,叫做FlowControl,很多交换机上也有这个功能,也叫 ...
- gzframework demo搭建
感谢框架作者,这里给出他的博客 http://www.cnblogs.com/GarsonZhang/ 背景:由于作者对代码的持续开发,导致了以前博客中的下载地址和构建方法和目前的项目不对应,这里给出 ...
- 2018-2019-2 20175211 实验一《Java开发环境的熟悉》实验报告
目录 代码托管 一.命令行下Java程序开发 二.IDEA下Java程序开发.调试 (1)建立与Git的链接 (2)开发.调试程序 (3)上传代码至码云 三.练习 四.问题及解决 五.学习总结 代码托 ...