题目传送门:BZOJ 1232

这是一个边权和点权结合在一起的题,但是因为要从当前点出发并回到原点,所以每个边都被经过了两次,节点至少被经过一次,所以我们将边权重新赋值,所以推出

那么遍历之后,并不是最终结果,我们有个根节点未选择,所以对于当前这个树,我们可以寻找一个最小的点权来作为根节点,那么他会被多经过一次,加上即使最后答案;

所以就是修改边权跑最小生成树;

这里我作了kruskal做法:

#include<bits/stdc++.h>
using namespace std;
int a[10001];
struct edge
{
int l,r,v;
}
e[100001];
int f[10001];
bool cmp(edge a,edge b)
{
return a.v<b.v;
}
int n,ans;
int find(int n)
{
if(f[n]==n) return n;
f[n]=find(f[n]);
return f[n];
}
void bing(int m,int n)
{
int x,y;
x=find(m);
y=find(n);
f[x]=y;
}
int main()
{
int p,num=0,k=0,s=0x7fffffff;
scanf("%d%d",&n,&p);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s=min(s,a[i]);
}
for(int i=1;i<=p;i++)
{
num++;
scanf("%d%d%d",&e[num].l,&e[num].r,&e[num].v);
e[num].v=e[num].v*2+a[e[num].l]+a[e[num].r];
}
sort(e+1,e+num+1,cmp);
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;k<n-1;i++)
{
if(find(e[i].l)!=find(e[i].r))
{
ans+=e[i].v;
bing(e[i].l,e[i].r);
k++;
}
}
printf("%d",ans+s);
return 0;
}

BZOJ 1232 安慰奶牛题解的更多相关文章

  1. 1232: [Usaco2008Nov]安慰奶牛cheer

    1232: [Usaco2008Nov]安慰奶牛cheer Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 612  Solved: 431[Submi ...

  2. BZOJ1232: [Usaco2008Nov]安慰奶牛cheer

    1232: [Usaco2008Nov]安慰奶牛cheer Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 578  Solved: 403[Submi ...

  3. BZOJ 1003 物流运输 题解 【SPFA+DP】

    BZOJ 1003 物流运输 题解 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的 ...

  4. BZOJ 1191 超级英雄 Hero 题解

    BZOJ 1191 超级英雄 Hero 题解 Description 现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的多少获得不同数目的奖品或奖金 ...

  5. 算法笔记_067:蓝桥杯练习 算法训练 安慰奶牛(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是 ...

  6. [bzoj1232][Usaco2008Nov]安慰奶牛cheer_Kruskal

    安慰奶牛 cheer bzoj-1232 Usaco-2008 Nov 题目大意:给定一个n个点,m条边的无向图,点有点权,边有边权.FJ从一个点出发,每经过一个点就加上该点点权,每经历一条边就加上该 ...

  7. [USACO08NOV]安慰奶牛Cheering up the Cow BZOJ 1232 Kruskal

    Farmer John变得非常懒, 他不想再继续维护供奶牛之间供通行的道路. 道路被用来连接N (5 <= N <= 10,000)个牧场, 牧场被连续地编号为1..N. 每一个牧场都是一 ...

  8. BZOJ 1232 [Usaco2008Nov]安慰奶牛cheer:最小生成树【树上dfs性质】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1232 题意: 给你一个无向图,n个点,m条边. 每条边有边权len[i][j],每个点有点 ...

  9. BZOJ 1232 USACO 2008 Nov. 安慰奶牛Cheer

    [题解] 对于每一条边,我们通过它需要花费的代价是边权的两倍加上这条边两个端点的点权. 我们把每条边的边权设为上述的值,然后跑一边最小生成树,再把答案加上最小的点权就好了. #include<c ...

随机推荐

  1. MSSqlServer 发布/订阅配置(主从同步)

    背景: 1.单个独立数据库的吞吐量是有瓶颈的,那么如何解决这个瓶颈? 2.服务器直接数据如何复制.并具备一致性.可扩展性? 资源: 官方资源:https://technet.microsoft.com ...

  2. cocos2d JS touch(触摸监听)-快速添加事件监听器到管理器

    cc.eventManager.addListener({ event: cc.EventListener.TOUCH_ALL_AT_ONCE, onTouchesMoved: function (t ...

  3. gitlab4.0_工程提交

    一,环境 gitlab         linux系统 IP :10.2.177.31   ==>(我已经申请了一个账户 A@A) 客户端      windows系统 IP:10.2.256. ...

  4. LeetCode67.二进制求和

    给定两个二进制字符串,返回他们的和(用二进制表示). 输入为非空字符串且只包含数字 1 和 0. 示例 1: 输入: a = "11", b = "1" 输出: ...

  5. vmvare 将主机的文件复制到虚拟机系统中 安装WMware tools

    在虚拟机里的ubuntu这里找到VMware tools包

  6. JavaScript-switch-case运用-案例

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  7. Eclipse 在Debug调试中用到的快捷键

    作用域 功能 快捷键 全局 单步返回 F7 全局 单步跳过 F6 全局 单步跳入 F5 全局 单步跳入选择 Ctrl+F5 全局 调试上次启动 F11 全局 继续 F8 全局 使用过滤器单步执行 Sh ...

  8. Discuz! 安装模板、插件提示“对不起,您安装的不是正版应用...

    iscuz 社区在更新到2.0以上后,增加了对插件的版本检测,在安装时,可能会出现:“对不起,您安装的不是正版应用,安装程序无法继续执行”的提示,要解决这个其实挺容易的,找到以下文件: /source ...

  9. html5-基本知识小结及补充

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  10. GBDT:梯度提升决策树

    http://www.jianshu.com/p/005a4e6ac775 综述   GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Ad ...