题目描述

思路

  蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了。

  $f[i][j]$表示第$i天有j$张股票的最大收益。

  那么有四种选择:

  1. 不买股票:$f[i][j]=max(f[i][j],f[i-1][j])$
  2. 买$j$张股票,之前没有买:$f[i][j]=-j*ap[i]$
  3. 买$j$张股票,之前有过交易,中间间隔了$w$天:$f[i][j]=max(f[i][j],f[i-w-1][k]-(j-k)*ap[i])$
  4. 卖$j$张股票,之前有过交易(废话),中间间隔了$w$天,$f[i][j]=max(f[i][j],f[i-w-1][k]+(k-j)*bp[i])$

  方程列出来了,还是很好理解的。那么怎么优化呢?我们发现$i,j,k$都要枚举$O(n^3)$的复杂度是会$T$的,我们需要用一些优化。

  我们发现:3转移中$f[i-w-1][k]-(j-k)*ap[i]=f[i-w-1][k]+k*ap[i]-j*ap[i]$,这样我们在第i天时只要找出最大的$f[i-w-1][k]+k*ap[i]$即可,因为前两维$i,j$已知,$j*ap[i]$是常数。

  用一个递减的单调队列维护使$f[i-w-1][k]+k*ap[i]$最大的$k$,每次取队首转移即可,注意如果$as[i]<j-k$(即买不了这么多股票)时,需要把队首弹出。那么4也是一样,维护最大的$f[i-w-1][k]+k*bp[i](bs[i]<k-j)$

code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=;
int n,m,w,ap,bp,as,bs;
int f[N][N],q[N],head,tail; int main()
{
scanf("%d%d%d",&n,&m,&w);
memset(f,,sizeof(f));//负无穷
for(int i=;i<=n;i++)
{
scanf("%d%d%d%d",&ap,&bp,&as,&bs);
for(int j=;j<=as;j++)f[i][j]=-ap*j;//转移2
for(int j=;j<=m;j++)f[i][j]=max(f[i-][j],f[i][j]);//转移1
if(i<=w)continue;//之前不能进行交易
head=,tail=;
for(int j=;j<=m;j++)
{
while(head<=tail&&q[head]<j-as)
head++;//不够买
while(head<=tail&&f[i-w-][q[tail]]+q[tail]*ap<=f[i-w-][j]+j*ap)
tail--;//单调性
q[++tail]=j;//加入新元素
if(head<=tail)
f[i][j]=max(f[i][j],f[i-w-][q[head]]+q[head]*ap-j*ap);//转移3
}
head=,tail=;
for(int j=m;j>=;j--)
{
while(head<=tail&&q[head]>j+bs)
head++;//不够卖
while(head<=tail&&f[i-w-][q[tail]]+q[tail]*bp<=f[i-w-][j]+j*bp)
tail--;//单调性
q[++tail]=j;//加入新元素
if(head<=tail)
f[i][j]=max(f[i][j],f[i-w-][q[head]]+q[head]*bp-j*bp);//转移4
}
}
cout<<f[n][];//最后一天全部卖出即为最优
}

股票交易——单调队列优化DP的更多相关文章

  1. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP

    上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...

  4. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  5. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  6. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  7. BZOJ 1855 股票交易 - 单调队列优化dp

    传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...

  8. BZOJ1855 股票交易 单调队列优化 DP

    描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as,  某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...

  9. 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)

    传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...

随机推荐

  1. 我在用的翻译软件 -> 微软翻译+网易有道词典+谷歌翻译

    Windows网页翻译 因为微软翻译相对来说翻译网页更为准确,我也喜欢用谷歌的Chrome浏览器,但是我没找到微软翻译的扩展,这里只能放弃 这个需要配合Microsoft Edge浏览器进行使用,也是 ...

  2. react16 路由按需加载、路由权限配置

    1. 路由按需加载: 不做按需加载,代码全部打包在bundle.js 文件里,首屏渲染很慢,项目文件较多,会出现1分钟加载的可能性. import React, { Component } from ...

  3. A-08 拉格朗日对偶性

    目录 拉格朗日对偶性 一.原始问题 1.1 约束最优化问题 1.2 广义拉格朗日函数 1.3 约束条件的考虑 二.对偶问题 三.原始问题和对偶问题的关系 3.1 定理1 3.2 推论1 3.3 定理2 ...

  4. js中try、catch、finally的执行规则

    首先一个常识就是,在浏览器执行JS脚本过程中,当出现脚本错误,并且你没有手动进行异常捕捉时,他会在浏览器下面出现黄色的叹号,这是正常的,这也不是最重要的,最重要的是,出错行以下的所有JS代码将中停执行 ...

  5. 信息传递 NOIP2015 day1 T2

    题文: 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一轮 ...

  6. .netCore+Vue 搭建的简捷开发框架--目录

    .netCore+Vue 搭建的简捷开发框架 .netCore+Vue 搭建的简捷开发框架 (2)--仓储层实现和EFCore 的使用 .netCore+Vue 搭建的简捷开发框架 (3)-- Ser ...

  7. web前端开发自学路线是怎样的?html+css+JavaScript的学习方法?

    不废话,直接干货 学习前端的几个个阶段: 一阶段:html标签.html5新增标签.css样式.css3样式.媒体查询等 二阶段:JavaScript.jQuery.ajax.面向对象.http传输协 ...

  8. [Luogu2593] [ZJOI2006]超级麻将

    题目地址 :https://www.luogu.org/problemnew/show/P2593. 无脑DP(虽说是抄的额) #include <iostream> #include & ...

  9. opencv实践::直线检测

    问题描述 寻找英语试卷填空题的下划线,这个对后期的切图与自动 识别都比较重要. 解决思路 方法: 通过图像形态学操作来寻找直线,霍夫获取位置信息与显示. #include <opencv2/op ...

  10. 实践开发:vue框架重点知识分析

    一个VUE项目的主树: assets文件夹是放静态资源: components是放组件: router是定义路由相关的配置; view视图: app.vue是一个应用主组件: main.js是入口文件 ...