Reinforcement Learning: An Introduction读书笔记(1)--Introduction
> 目 录 <
- learning & intelligence 的基本思想
- RL的定义、特点、四要素
- 与其他learning methods、evolutionary methods的比较
- 例子(井字棋 tic-tac-toe)及早期发展史
> 笔 记 <
learning & intelligence 的基本思想:learning from interaction
RL的定义:
RL is learning what to do--how to map situations and actions--so as to maximize a numerical reward signal.
RL problems: a learning agent interacting over time with its environment to achieve a goal.
(sensation,action & goal三要素: agent需要能够感知环境的states,采取actions来影响state,有1个or多个与环境中的state相关的目标。)
2个特点:
1. trial-and-error search:不告诉learner该如何做,而是让他通过不断地尝试来发现该采取什么行为来获得更多的奖励。
2. delayed reward: 行为不仅仅影响immediate reward,还影响next situation,甚至是随后所有的subsequent rewards。
RL四要素:
1. policy: 定义了learning agent在特定时刻的行为表现。
2. reward signal: 定义了RL problem的目标,反映了what is good in an immediate sense
3. value function:定义了what is good in the long run。也就是说,某一state的value指的是,agent从现在开始一直到未来可以得到的累计回报的期望。
4. model of the environment (optional, only for model-based methods):它模仿了环境的行为,也就是说给出state和action,model可以预测next state和reward。
与其他learning methods比较:
1. RL不同于supervised learning,因为监督学习是learning for a training set of labelled examples provided by a knowledgeable external supervisor.
2. RL不同于unsupervised learning,因为非监督学习主要是finding structure hidden in collections of unlabeled data。虽然RL一定程度上可以看成是非监督学习 (∵不依赖examples of correct behavior),但实际上两者并不相同,因为RL的目的是maximize a reward signal而非trying to find hidden structure. 此外,RL和时间有很大的关系,而且反馈都是具有时间效应的。
3. RL其他特点:
(1) trade-off between exploration and exploitation是其独有的challenge;
(2) 关注的不是isolated subproblems,而是whole problem of a goal-directed agent interacting with an uncertain environment;
(3) 多学科交叉:数学、心理学、神经科学......
与evolutionary methods (e.g. 遗传算法)的比较:
在(1) 问题空间不大 or 有足够时间去搜索的情况下, (2)或者learning agent不能获知环境完整state的情况下,evolutionary methods比较有效。
但是,RL利用了每个个体与环境交互所得到的信息去学习,因此多数情况下RL更好。
具体例子—井字棋(tic-tac-toe):
分析了用不同的方法 (e.g. minimax、动态规划、进化方法、RL )来解决
RL早期发展史:
略
Reinforcement Learning: An Introduction读书笔记(1)--Introduction的更多相关文章
- Reinforcement Learning: An Introduction读书笔记(3)--finite MDPs
> 目 录 < Agent–Environment Interface Goals and Rewards Returns and Episodes Policies and Val ...
- Reinforcement Learning: An Introduction读书笔记(4)--动态规划
> 目 录 < Dynamic programming Policy Evaluation (Prediction) Policy Improvement Policy Iterat ...
- Reinforcement Learning: An Introduction读书笔记(2)--多臂机
> 目 录 < k-armed bandit problem Incremental Implementation Tracking a Nonstationary Problem ...
- 《Machine Learning Yearing》读书笔记
——深度学习的建模.调参思路整合. 写在前面 最近偶尔从师兄那里获取到了吴恩达教授的新书<Machine Learning Yearing>(手稿),该书主要分享了神经网络建模.训练.调节 ...
- Machine Learning for hackers读书笔记(六)正则化:文本回归
data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks < ...
- Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤
#定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...
- Machine Learning for hackers读书笔记_一句很重要的话
为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.
- Machine Learning for hackers读书笔记(十二)模型比较
library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_C ...
- Machine Learning for hackers读书笔记(十)KNN:推荐系统
#一,自己写KNN df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\ ...
随机推荐
- 背水一战 Windows 10 (103) - 通知(Toast): 基础, 按计划显示 toast 通知
[源码下载] 背水一战 Windows 10 (103) - 通知(Toast): 基础, 按计划显示 toast 通知 作者:webabcd 介绍背水一战 Windows 10 之 通知(Toast ...
- 包建强的培训课程(2):Android与设计模式
@import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...
- GitHubPopular运行记录
运行前准备: Android SDK 23.0.3 2.gradle-2.14.1-all 网盘地址 开始运行 按照项目描述中所说 npm i ------- ok react-native run- ...
- 微服务中Feign快速搭建
在微服务架构搭建声明性REST客户端[feign].Feign是一个声明式的Web服务客户端.这使得Web服务客户端的写入更加方便 要使用Feign创建一个界面并对其进行注释.它具有可插入注释支持,包 ...
- Java 虚拟机的垃圾回收
背景 垃圾收集(Garbage Collection,GC),GC的历史比Java久远,1960年诞生于MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言. 对于Java来说,运行时区域 ...
- Eclipse 在高分辨率4K显示器下图标按钮过小
买了LG的4K显示器,发现由于分辨率太高,导致好多软件和网站都没进行高分辨率适配,显示比较小,缩放会使好多软件都显示错位.Eclipse就是其中之一. 网上搜了下解决方案如下: 原理 高DPI Win ...
- Ubuntu 16.04下GDB调试
在linux中还有一个更受大家欢迎的调试工具:GDB.GDB是一个由GNU开源组织发布的.UNIX/LINUX操作系统下的.基于命令行的.功能强大的程序调试工具.可以用来调试C,C++程序. GDB功 ...
- ubuntu 16.04 安装cuda的方法
很多神经网络架构都需要安装CUDA,安装这个的确费了我不少时间,是要总结一下流程了. 安装这个,最好使用官网的安装步骤和流程,不然,会走很多弯路: https://developer.nvidia.c ...
- 动态dp初探
动态dp初探 动态区间最大子段和问题 给出长度为\(n\)的序列和\(m\)次操作,每次修改一个元素的值或查询区间的最大字段和(SP1714 GSS3). 设\(f[i]\)为以下标\(i\)结尾的最 ...
- yum install --downloadonly 下载依赖包研究
在CentOS中可以使用yum自动安装软件,在离线环境中却行不通. Linux localhost 3.10.0-327.el7.x86_64 #1 SMP Thu Nov 19 22:10:57 U ...