TensorFlow训练神经网络cost一直为0
问题描述
这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是:
- 定义神经网络的layers(层)以及初始化每一层的参数
- 然后迭代:
- 前向传播(Forward propagation)
- 计算cost(Compute cost)
- 反向传播(Backward propagation)
- 更新参数(Update parameters)
- 使用训练好的参数去做预测
在训练的时候发现了一个很奇怪的现象:每一次迭代所有的cost都为0。一开始以为是参数初始化出了问题,花了好多时间在上面。后来仔细研究了一下发现是最后一层的输出函数用错了,我用的是tf.nn.softmax_cross_entropy_with_logits来计算cost。 我们知道softmax一般是用来做multiclass classifier的,也就是输出的类别要大于两个。对于一个binary classifier而言,很明显我们要用sigmoid函数也就是tf.nn.sigmoid_cross_entropy_with_logits来计算cost,于是问题解决。
为什么?
那么为什么在binary classifier中使用了softmax之后cost就一直是0呢?我们先来看一下softmax的公式:
s(z)j=ezj∑Kk=1ezks(z)j=ezj∑k=1Kezk
- binary classifier的output是一维的(one-dimension 0/1),那么如果只有一个元素,那么s(z)就永远等于1,不管z的值是多少。
- 恒定输出1之后,我们结合交叉熵的计算公式可知:
- 如果true label是0,那么
-0*log(1) = 0 - 如果true label是1,那么
-1*log(1) = 0
- 如果true label是0,那么
Tensorflow函数:tf.nn.softmax_cross_entropy_with_logits 讲解
首先把Tensorflow英文API搬过来:
tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)
Computes softmax cross entropy between logits and labels.
Measures the probability error in discrete classification tasks in which the classes are mutually exclusive (each entry is in exactly one class). For example, each CIFAR-10 image is labeled with one and only one label: an image can be a dog or a truck, but not both.
NOTE: While the classes are mutually exclusive, their probabilities need not be. All that is required is that each row oflabels is a valid probability distribution. If they are not, the computation of the gradient will be incorrect.
If using exclusive labels (wherein one and only one class is true at a time), seesparse_softmax_cross_entropy_with_logits.
WARNING: This op expects unscaled logits, since it performs a softmax on logits internally for efficiency. Do not call this op with the output of softmax, as it will produce incorrect results.
logits and labels must have the same shape [batch_size, num_classes] and the same dtype (either float16,float32, or float64).
Note that to avoid confusion, it is required to pass only named arguments to this function.
Args:
_sentinel: Used to prevent positional parameters. Internal, do not use.labels: Each rowlabels[i]must be a valid probability distribution.logits: Unscaled log probabilities.dim: The class dimension. Defaulted to -1 which is the last dimension.name: A name for the operation (optional).
这个函数至少需要两个参数:labels, logits.
labels:为神经网络期望的输出
logits:为神经网络最后一层的输出
警告:这个函数内部自动计算softmax,然后再计算交叉熵代价函数,也就是说logits必须是没有经过tf.nn.softmax函数处理的数据,否则导致训练结果有问题。建议编程序时使用这个函数,而不必自己编写交叉熵代价函数。
下面是两层CNN识别mnist的softmax回归实验:
- #coding=utf-8
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
- def compute_accuracy(v_xs,v_ys):
- global prediction
- y_pre=sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1}) #这里的keep_prob是保留概率,即我们要保留的RELU的结果所占比例
- correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
- accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
- result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
- return result
- def weight_variable(shape):
- inital=tf.truncated_normal(shape,stddev=0.1) #stddev爲標準差
- return tf.Variable(inital)
- def bias_variable(shape):
- inital=tf.constant(0.1,shape=shape)
- return tf.Variable(inital)
- def conv2d(x,W): #x爲像素值,W爲權值
- #strides[1,x_movement,y_movement,1]
- #must have strides[0]=strides[3]=1
- #padding=????
- return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')#
- def max_pool_2x2(x):
- # strides[1,x_movement,y_movement,1]
- return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#ksize二三维为池化窗口
- #define placeholder for inputs to network
- xs=tf.placeholder(tf.float32,[None,784])/255
- ys=tf.placeholder(tf.float32,[None,10])
- keep_prob=tf.placeholder(tf.float32)
- x_image=tf.reshape(xs, [-1,28,28,1]) #-1为这个维度不确定,变成一个4维的矩阵,最后为最里面的维数
- #print x_image.shape #最后这个1理解为输入的channel,因为为黑白色所以为1
- ##conv1 layer##
- W_conv1=weight_variable([5,5,1,32]) #patch 5x5,in size 1 是image的厚度,outsize 32 是提取的特征的维数
- b_conv1=bias_variable([32])
- h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)# output size 28x28x32 因为padding='SAME'
- h_pool1=max_pool_2x2(h_conv1) #output size 14x14x32
- ##conv2 layer##
- W_conv2=weight_variable([5,5,32,64]) #patch 5x5,in size 32 是conv1的厚度,outsize 64 是提取的特征的维数
- b_conv2=bias_variable([64])
- h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)# output size 14x14x64 因为padding='SAME'
- h_pool2=max_pool_2x2(h_conv2) #output size 7x7x64
- ##func1 layer##
- W_fc1=weight_variable([7*7*64,1024])
- b_fc1=bias_variable([1024])
- #[n_samples,7,7,64]->>[n_samples,7*7*64]
- h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
- h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
- h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob) #防止过拟合
- ##func2 layer##
- W_fc2=weight_variable([1024,10])
- b_fc2=bias_variable([10])
- #prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
- prediction=tf.matmul(h_fc1_drop,W_fc2)+b_fc2
- #h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob) #防止过拟合
- #the errro between prediction and real data
- #cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
- cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys, logits=prediction)
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
- for i in range(1000):
- batch_xs,batch_ys=mnist.train.next_batch(100)
- sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5})
- if i%50 ==0:
- accuracy = 0
- for j in range(10):
- test_batch = mnist.test.next_batch(1000)
- acc_forone=compute_accuracy(test_batch[0], test_batch[1])
- #print 'once=%f' %(acc_forone)
- accuracy=acc_forone+accuracy
- print '测试结果:batch:%g,准确率:%f' %(i,accuracy/10)
实验结果为:
- 测试结果:batch:0,准确率:0.090000
- 测试结果:batch:50,准确率:0.788600
- 测试结果:batch:100,准确率:0.880200
- 测试结果:batch:150,准确率:0.904600
- 测试结果:batch:200,准确率:0.927500
- 测试结果:batch:250,准确率:0.929800
- 测试结果:batch:300,准确率:0.939600
- 测试结果:batch:350,准确率:0.942100
- 测试结果:batch:400,准确率:0.950600
- 测试结果:batch:450,准确率:0.950700
- 测试结果:batch:500,准确率:0.956700
- 测试结果:batch:550,准确率:0.956000
- 测试结果:batch:600,准确率:0.957100
- 测试结果:batch:650,准确率:0.958400
- 测试结果:batch:700,准确率:0.961500
- 测试结果:batch:750,准确率:0.963800
- 测试结果:batch:800,准确率:0.965000
- 测试结果:batch:850,准确率:0.966300
- 测试结果:batch:900,准确率:0.967800
- 测试结果:batch:950,准确率:0.967700
迭代次数没有太多,否则准确率还会提高。
TensorFlow训练神经网络cost一直为0的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- Tensorflow训练神经网络
以下代码摘自<Tensorflow实战Google 深度学习框架>. 由于这段代码包含了激活函数去线性化,多层神经网络,指数衰减学习率,正则化防止过拟合,滑动平均稳定模型等手段,涵盖了神经 ...
随机推荐
- 【LOJ】#2076. 「JSOI2016」炸弹攻击
题解 我冷静一下,话说如果去掉建筑和R的限制好像是模拟退火吧 然后开始写模拟退火了,起始点就随机一个敌人作为起始点 没对着数据写了一下获得了70pts,感到美滋滋 然后对着数据卡了很久--发现有个数据 ...
- Ubuntu服务器上相关软件或应用时常打不开的问题
于接触linux系统时间不就,所以在操作上难免会出现失误,以下两个问题就是近期经常出现的问题,具体如下: 1.ubuntu服务器上的浏览器时常打不开. 2.安装的pycharm和系统自带的pychar ...
- Codeforces 12D Ball cdq分治
裸的cdq, 没啥好说的, 要注意mid左边和mid右边的a相同的情况. #include<bits/stdc++.h> #define LL long long #define fi f ...
- 常用的服务发现对比(Consul、zookeeper、etcd、eureka)
这里就平时经常用到的服务发现的产品进行下特性的对比,首先看下结论: Feature Consul Zookeeper Etcd Eureka 服务健康检查 服务状态,内存,硬盘等 (弱)长连接 ...
- MySQL数据库引擎详解
作为Java程序员,MySQL数据库大家平时应该都没少使用吧,对MySQL数据库的引擎应该也有所了解,这篇文章就让我详细的说说MySQL数据库的Innodb和MyIASM两种引擎以及其索引结构.也来巩 ...
- UI自动化测试(一)简介及Selenium工具的介绍和环境搭建
自动化测试简介 1.1何为自动化测试? 是把以人为驱动的测试转化为机器执行的一种过程,它是一种以程序测试程序的过程.换言之,就是以程序实现的方式来代替手工测试. 1.2自动化测试分类 分为功能自动化测 ...
- MySQL数据库之视图
1 引言 为了简化复杂SQL语句编写,以及提高数据库安全性,MySQL数据库视图特性.视图是一张虚拟表,不在数据库中以储存的数据值形式存在.在开发中,开发者往往只对某些特定数据和所负责的特定任务感兴趣 ...
- 循序渐进学.Net Core Web Api开发系列【12】:缓存
系列目录 循序渐进学.Net Core Web Api开发系列目录 本系列涉及到的源码下载地址:https://github.com/seabluescn/Blog_WebApi 一.概述 本篇介绍如 ...
- Codeforces.566F.Clique in the Divisibility Graph(DP)
题目链接 \(Description\) 给定集合\(S=\{a_1,a_2,\ldots,a_n\}\),集合中两点之间有边当且仅当\(a_i|a_j\)或\(a_j|a_i\). 求\(S\)最大 ...
- bzoj 3673 可持久化并查集
本质上是维护两个可持久化数组,用可持久化线段树维护. /************************************************************** Problem: ...