TensorFlow训练神经网络cost一直为0
问题描述
这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是:
- 定义神经网络的layers(层)以及初始化每一层的参数
- 然后迭代:
- 前向传播(Forward propagation)
- 计算cost(Compute cost)
- 反向传播(Backward propagation)
- 更新参数(Update parameters)
- 使用训练好的参数去做预测
在训练的时候发现了一个很奇怪的现象:每一次迭代所有的cost都为0。一开始以为是参数初始化出了问题,花了好多时间在上面。后来仔细研究了一下发现是最后一层的输出函数用错了,我用的是tf.nn.softmax_cross_entropy_with_logits来计算cost。 我们知道softmax一般是用来做multiclass classifier的,也就是输出的类别要大于两个。对于一个binary classifier而言,很明显我们要用sigmoid函数也就是tf.nn.sigmoid_cross_entropy_with_logits来计算cost,于是问题解决。
为什么?
那么为什么在binary classifier中使用了softmax之后cost就一直是0呢?我们先来看一下softmax的公式:
s(z)j=ezj∑Kk=1ezks(z)j=ezj∑k=1Kezk
- binary classifier的output是一维的(one-dimension 0/1),那么如果只有一个元素,那么s(z)就永远等于1,不管z的值是多少。
- 恒定输出1之后,我们结合交叉熵的计算公式可知:
- 如果true label是0,那么
-0*log(1) = 0 - 如果true label是1,那么
-1*log(1) = 0
- 如果true label是0,那么
Tensorflow函数:tf.nn.softmax_cross_entropy_with_logits 讲解
首先把Tensorflow英文API搬过来:
tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)
Computes softmax cross entropy between logits and labels.
Measures the probability error in discrete classification tasks in which the classes are mutually exclusive (each entry is in exactly one class). For example, each CIFAR-10 image is labeled with one and only one label: an image can be a dog or a truck, but not both.
NOTE: While the classes are mutually exclusive, their probabilities need not be. All that is required is that each row oflabels is a valid probability distribution. If they are not, the computation of the gradient will be incorrect.
If using exclusive labels (wherein one and only one class is true at a time), seesparse_softmax_cross_entropy_with_logits.
WARNING: This op expects unscaled logits, since it performs a softmax on logits internally for efficiency. Do not call this op with the output of softmax, as it will produce incorrect results.
logits and labels must have the same shape [batch_size, num_classes] and the same dtype (either float16,float32, or float64).
Note that to avoid confusion, it is required to pass only named arguments to this function.
Args:
_sentinel: Used to prevent positional parameters. Internal, do not use.labels: Each rowlabels[i]must be a valid probability distribution.logits: Unscaled log probabilities.dim: The class dimension. Defaulted to -1 which is the last dimension.name: A name for the operation (optional).
这个函数至少需要两个参数:labels, logits.
labels:为神经网络期望的输出
logits:为神经网络最后一层的输出
警告:这个函数内部自动计算softmax,然后再计算交叉熵代价函数,也就是说logits必须是没有经过tf.nn.softmax函数处理的数据,否则导致训练结果有问题。建议编程序时使用这个函数,而不必自己编写交叉熵代价函数。
下面是两层CNN识别mnist的softmax回归实验:
- #coding=utf-8
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
- def compute_accuracy(v_xs,v_ys):
- global prediction
- y_pre=sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1}) #这里的keep_prob是保留概率,即我们要保留的RELU的结果所占比例
- correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
- accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
- result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
- return result
- def weight_variable(shape):
- inital=tf.truncated_normal(shape,stddev=0.1) #stddev爲標準差
- return tf.Variable(inital)
- def bias_variable(shape):
- inital=tf.constant(0.1,shape=shape)
- return tf.Variable(inital)
- def conv2d(x,W): #x爲像素值,W爲權值
- #strides[1,x_movement,y_movement,1]
- #must have strides[0]=strides[3]=1
- #padding=????
- return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')#
- def max_pool_2x2(x):
- # strides[1,x_movement,y_movement,1]
- return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#ksize二三维为池化窗口
- #define placeholder for inputs to network
- xs=tf.placeholder(tf.float32,[None,784])/255
- ys=tf.placeholder(tf.float32,[None,10])
- keep_prob=tf.placeholder(tf.float32)
- x_image=tf.reshape(xs, [-1,28,28,1]) #-1为这个维度不确定,变成一个4维的矩阵,最后为最里面的维数
- #print x_image.shape #最后这个1理解为输入的channel,因为为黑白色所以为1
- ##conv1 layer##
- W_conv1=weight_variable([5,5,1,32]) #patch 5x5,in size 1 是image的厚度,outsize 32 是提取的特征的维数
- b_conv1=bias_variable([32])
- h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)# output size 28x28x32 因为padding='SAME'
- h_pool1=max_pool_2x2(h_conv1) #output size 14x14x32
- ##conv2 layer##
- W_conv2=weight_variable([5,5,32,64]) #patch 5x5,in size 32 是conv1的厚度,outsize 64 是提取的特征的维数
- b_conv2=bias_variable([64])
- h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)# output size 14x14x64 因为padding='SAME'
- h_pool2=max_pool_2x2(h_conv2) #output size 7x7x64
- ##func1 layer##
- W_fc1=weight_variable([7*7*64,1024])
- b_fc1=bias_variable([1024])
- #[n_samples,7,7,64]->>[n_samples,7*7*64]
- h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
- h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
- h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob) #防止过拟合
- ##func2 layer##
- W_fc2=weight_variable([1024,10])
- b_fc2=bias_variable([10])
- #prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
- prediction=tf.matmul(h_fc1_drop,W_fc2)+b_fc2
- #h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob) #防止过拟合
- #the errro between prediction and real data
- #cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
- cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys, logits=prediction)
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
- for i in range(1000):
- batch_xs,batch_ys=mnist.train.next_batch(100)
- sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5})
- if i%50 ==0:
- accuracy = 0
- for j in range(10):
- test_batch = mnist.test.next_batch(1000)
- acc_forone=compute_accuracy(test_batch[0], test_batch[1])
- #print 'once=%f' %(acc_forone)
- accuracy=acc_forone+accuracy
- print '测试结果:batch:%g,准确率:%f' %(i,accuracy/10)
实验结果为:
- 测试结果:batch:0,准确率:0.090000
- 测试结果:batch:50,准确率:0.788600
- 测试结果:batch:100,准确率:0.880200
- 测试结果:batch:150,准确率:0.904600
- 测试结果:batch:200,准确率:0.927500
- 测试结果:batch:250,准确率:0.929800
- 测试结果:batch:300,准确率:0.939600
- 测试结果:batch:350,准确率:0.942100
- 测试结果:batch:400,准确率:0.950600
- 测试结果:batch:450,准确率:0.950700
- 测试结果:batch:500,准确率:0.956700
- 测试结果:batch:550,准确率:0.956000
- 测试结果:batch:600,准确率:0.957100
- 测试结果:batch:650,准确率:0.958400
- 测试结果:batch:700,准确率:0.961500
- 测试结果:batch:750,准确率:0.963800
- 测试结果:batch:800,准确率:0.965000
- 测试结果:batch:850,准确率:0.966300
- 测试结果:batch:900,准确率:0.967800
- 测试结果:batch:950,准确率:0.967700
迭代次数没有太多,否则准确率还会提高。
TensorFlow训练神经网络cost一直为0的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- Tensorflow训练神经网络
以下代码摘自<Tensorflow实战Google 深度学习框架>. 由于这段代码包含了激活函数去线性化,多层神经网络,指数衰减学习率,正则化防止过拟合,滑动平均稳定模型等手段,涵盖了神经 ...
随机推荐
- Codeforces 280C Game on Tree 期望
Game on Tree 这种题好像在wannfly训练营讲过, 我怎么又不会写啦, 我好菜啊啊啊. 我们按每个点算贡献, 一个点有贡献就说明它是被选中的点, 那么它被选中的概率就为1 / depth ...
- 记在VMware虚拟机中对网站进行性能压力测试的经历
由于本次测试,仅仅是对静态网站首页进行的测试,所以没有涉及到MySQL数据库的性能监测 服务器基本配置 webbench测试工具 Linux上一款优秀的web性能压力测试工具.webbench最多可以 ...
- php 会话控制(关于cookie的维护与生命周期)
cookie是在服务器端被创建并写回到客户端浏览器,浏览器接到响应头中关于写cookie的指令则在本地临时文件中. cookie内容的存储是键值对的方式,键和值都只能是字符串. 函数原型:setcoo ...
- windows下mysql配置
windows下mysql配置 忙活了大半天,总算配置好了,本文献给windows下没试用过Mysql的小白,勿喷 http://blog.csdn.net/z1074907546/article ...
- 使用ApiPost测试接口时需要先登录怎么办?利用Cookie模拟登陆!
ApiPost简介: ApiPost是一个支持团队协作,并可直接生成文档的API调试.管理工具.它支持模拟POST.GET.PUT等常见请求,是后台接口开发者或前端.接口测试人员不可多得的工具 . 下 ...
- web前端实现本地存储
当我们在提及web前端本地存储的时候,首先需要介绍一下本地化存储的概念和历史.本地化存储从来不是一个新奇的概念,因为web应用程序一直在追求的就是媲美甚至超越桌面应用程序.但是桌面应用程序一直优于we ...
- Winform给TextBox设置默认值(获取焦点后默认值消失)
主要是通过TextBox的获取焦点Enter和失去焦点Leave两个事件来实现的, 思路如下: 1.设置一个字符串常量,作为TextBox的默认值: 2.在界面的构造方法中将默认值赋值给TextBox ...
- vue 直接改变数组数据不刷新
因为 JavaScript 的限制,Vue.js 不能检测到下面数组变化: 直接用索引设置元素,如 vm.items[0] = {}: 修改数据的长度,如 vm.items.length = 0. 为 ...
- 12、Redis的事务
写在前面的话:读书破万卷,编码如有神 --------------------------------------------------------------------------------- ...
- 华为交换机VRRP配置实例收集(转)
示例图: 其实说白了就是做线路冗余,达到热备切换. 组网需求: 楼层1和楼层2分别通过两条线路做冗余接入交换机(本示例只考虑vrrp,暂不考虑其他方面).当其中一段链路故障时,能通过另外一条链路传输. ...