1. 数据集

minist手写体数字数据集

2. 代码

'''
Description:
Author: zhangyh
Date: 2024-05-04 15:21:49
LastEditTime: 2024-05-04 22:36:26
LastEditors: zhangyh
''' import numpy as np class MlpClassifier:
def __init__(self, input_size, hidden_size1, hidden_size2, output_size, learning_rate=0.01):
self.input_size = input_size
self.hidden_size1 = hidden_size1
self.hidden_size2 = hidden_size2
self.output_size = output_size
self.learning_rate = learning_rate self.W1 = np.random.randn(input_size, hidden_size1) * 0.01
self.b1 = np.zeros((1, hidden_size1))
self.W2 = np.random.randn(hidden_size1, hidden_size2) * 0.01
self.b2 = np.zeros((1, hidden_size2))
self.W3 = np.random.randn(hidden_size2, output_size) * 0.01
self.b3 = np.zeros((1, output_size)) def softmax(self, x):
exps = np.exp(x - np.max(x, axis=1, keepdims=True))
return exps / np.sum(exps, axis=1, keepdims=True) def relu(self, x):
return np.maximum(x, 0) def relu_derivative(self, x):
return np.where(x > 0, 1, 0) def cross_entropy_loss(self, y_true, y_pred):
m = y_true.shape[0]
return -np.sum(y_true * np.log(y_pred + 1e-8)) / m def forward(self, X):
self.Z1 = np.dot(X, self.W1) + self.b1
self.A1 = self.relu(self.Z1)
self.Z2 = np.dot(self.A1, self.W2) + self.b2
self.A2 = self.relu(self.Z2)
self.Z3 = np.dot(self.A2, self.W3) + self.b3
self.A3 = self.softmax(self.Z3)
return self.A3 def backward(self, X, y):
m = X.shape[0]
dZ3 = self.A3 - y
dW3 = np.dot(self.A2.T, dZ3) / m
db3 = np.sum(dZ3, axis=0, keepdims=True) / m
dA2 = np.dot(dZ3, self.W3.T)
dZ2 = dA2 * self.relu_derivative(self.Z2)
dW2 = np.dot(self.A1.T, dZ2) / m
db2 = np.sum(dZ2, axis=0, keepdims=True) / m
dA1 = np.dot(dZ2, self.W2.T)
dZ1 = dA1 * self.relu_derivative(self.Z1)
dW1 = np.dot(X.T, dZ1) / m
db1 = np.sum(dZ1, axis=0, keepdims=True) / m # Update weights and biases
self.W3 -= self.learning_rate * dW3
self.b3 -= self.learning_rate * db3
self.W2 -= self.learning_rate * dW2
self.b2 -= self.learning_rate * db2
self.W1 -= self.learning_rate * dW1
self.b1 -= self.learning_rate * db1 # 计算精确度
def accuracy(self, y_pred, y):
predictions = np.argmax(y_pred, axis=1)
correct_predictions = np.sum(predictions == np.argmax(y, axis=1))
return correct_predictions / y.shape[0] def train(self, X, y, epochs=100, batch_size=64):
print('Training...')
m = X.shape[0]
for epoch in range(epochs):
for i in range(0, m, batch_size):
X_batch = X[i:i+batch_size]
y_batch = y[i:i+batch_size] # Forward propagation
y_pred = self.forward(X_batch) # Backward propagation
self.backward(X_batch, y_batch) if (epoch+1) % 10 == 0:
loss = self.cross_entropy_loss(y, self.forward(X))
acc = self.accuracy(y_pred, y_batch)
print(f'Epoch {epoch+1}/{epochs}, Loss: {loss}, Training-Accuracy: {acc}') def test(self, X, y):
print('Testing...')
y_pred = self.forward(X)
acc = self.accuracy(y_pred, y)
return acc if __name__ == '__main__': import tensorflow as tf # 加载MNIST数据集
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data() # 将图像转换为向量形式
X_train = X_train.reshape(X_train.shape[0], -1) / 255.0
X_test = X_test.reshape(X_test.shape[0], -1) / 255.0
# 将标签进行 one-hot 编码
num_classes = 10
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes) # 打印转换后的结果
# 训练集维度: (60000, 784) (60000, 10)
# 测试集维度: (10000, 784) (10000, 10)
model = MlpClassifier(784, 128, 128, 10) model.train(X_train, y_train) test_acc = model.test(X_test, y_test)
print(f'Test-Accuracy: {test_acc}')

  

3. 运行结果

Training...
Epoch 10/100, Loss: 0.3617846299623725, Training-Accuracy: 0.9375
Epoch 20/100, Loss: 0.1946690996652946, Training-Accuracy: 1.0
Epoch 30/100, Loss: 0.13053815227522408, Training-Accuracy: 1.0
Epoch 40/100, Loss: 0.09467908427578901, Training-Accuracy: 1.0
Epoch 50/100, Loss: 0.07120217251250453, Training-Accuracy: 1.0
Epoch 60/100, Loss: 0.055233734086591456, Training-Accuracy: 1.0
Epoch 70/100, Loss: 0.04369171830999816, Training-Accuracy: 1.0
Epoch 80/100, Loss: 0.03469674775956587, Training-Accuracy: 1.0
Epoch 90/100, Loss: 0.027861857647949812, Training-Accuracy: 1.0
Epoch 100/100, Loss: 0.0225212692988995, Training-Accuracy: 1.0
Testing...
Test-Accuracy: 0.9775

  

MLP实现minist数据集分类任务的更多相关文章

  1. 单向LSTM笔记, LSTM做minist数据集分类

    单向LSTM笔记, LSTM做minist数据集分类 先介绍下torch.nn.LSTM()这个API 1.input_size: 每一个时步(time_step)输入到lstm单元的维度.(实际输入 ...

  2. 用CNN及MLP等方法识别minist数据集

    用CNN及MLP等方法识别minist数据集 2017年02月13日 21:13:09 hnsywangxin 阅读数:1124更多 个人分类: 深度学习.keras.tensorflow.cnn   ...

  3. 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化

    一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...

  4. Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes

    Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = ...

  5. Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression

    Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression 一. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题, ...

  6. Python实现鸢尾花数据集分类问题——基于skearn的SVM

    Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaoli ...

  7. BP算法在minist数据集上的简单实现

    BP算法在minist上的简单实现 数据:http://yann.lecun.com/exdb/mnist/ 参考:blog,blog2,blog3,tensorflow 推导:http://www. ...

  8. TensorFlow笔记三:从Minist数据集出发 两种经典训练方法

    Minist数据集:MNIST_data 包含四个数据文件 一.方法一:经典方法 tf.matmul(X,w)+b import tensorflow as tf import numpy as np ...

  9. 3.keras-简单实现Mnist数据集分类

    keras-简单实现Mnist数据集分类 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.util ...

  10. 6.keras-基于CNN网络的Mnist数据集分类

    keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras. ...

随机推荐

  1. elasticsearch映射创建查询 和Spring Data ElasticSearch入门

    Elasticsearch核心概念 Elasticsearch是面向文档(document oriented)的,这意味着它可以存储整个对象或文档(document).然而它不仅 仅是存储,还会索引( ...

  2. centos 6.4下fdisk分区、格式化、挂载新硬盘

    centos 6.4下fdisk分区.格式化.挂载新硬盘 作者: cat 日期: 2013 年 9 月 10 日 发表评论 (0) 查看评论 1.# fdisk -l 查看当前磁盘信息,就会发现最下面 ...

  3. 带你走进红帽企业级 Linux 6体验之旅(安装篇)

    红帽在11月10日发布了其企业级Linux,RHEL 6的正式版(51CTO编辑注:红帽官方已经不用RHEL这个简称了,其全称叫做Red Hat Enterprise Linux).新版带来了将近18 ...

  4. button submit你以为你阻止了默认事件?

    前言 先解决掉一个误区: 很多人写button的时候,就这样写: <button><botton> 你认为就是默认的submit的时候,这时候就可能出问题了. 当然之所以你没有 ...

  5. redis 简单整理——持久化的问题定位和优化[二十一]

    前言 Redis持久化功能一直是影响Redis性能的高发地,简单介绍一下持久化的问题定位和优化. 正文 当Redis做RDB或AOF重写时,一个必不可少的操作就是执行fork操作创 建子进程,对于大多 ...

  6. vue项目node-scss装不上问题( vue执行npm install报错: Can‘t find Python executable “python“, you can set the PYTHON env variable

    一.描述从网上下载的一个Vue模板项目,导入VsCode,执行npm install命令后,报错了,报错的信息是node-sass安装失败,同时提示需要python环境的错误信息,这是因为安装node ...

  7. Django框架——ajax补充、多对多三种创建、序列化组件、批量操作数据、分页器

    ajax补充说明 主要是针对回调函数args接收到的响应数据 1.后端request.is_ajax() 用于判断当前请求是否由ajax发出 2.后端返回的三板斧都会被args接收不再影响整个浏览器页 ...

  8. 【漫画】最近,老王又双叒get了CDN的新技能—可编程化敏捷开发

    原文链接本文为阿里云原创内容,未经允许不得转载.

  9. 阿里巴巴云原生 etcd 服务集群管控优化实践

    简介: 这些年,阿里云原生 etcd 服务发生了翻天覆地的变化,这篇文章主要分享一下 etcd 服务在面对业务量大规模增长下遇到的问题以及我们是如何解决的,希望对读者了解 etcd 的使用和管控运维提 ...

  10. [Caddy2] Caddyfile 概念预览

    结构 块: 所有的指令必须在 { } 块中,如果只有一个站点,则块标记可以省略. 全局的配置块可以放在最上方,其次是站点的配置块. 指令: 指令是服务于站点配置的关键词. 关键词和引号: 空格在 Ca ...