[问题2014S08] 复旦高等代数II(13级)每周一题(第八教学周)
[问题2014S08] 设分块上三角阵 \[A=\begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},\] 其中 \(m\) 阶方阵 \(A_1\) 的 Jordan 标准型为 \(J_1\), \(n\) 阶方阵 \(A_2\) 的 Jordan 标准型为 \(J_2\), 并且 \(A_1,A_2\) 没有公共的特征值. 证明: 矩阵 \(A\) 的 Jordan 标准型就是 \[\begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix}.\]
注 (1) 本题是复旦高代教材第 293 页复习题 15 的推广, 在那道题目中, \(A_1,A_2\) 的 Jordan 标准型 \(J_1,J_2\) 都只由一个 Jordan 块构成, 这里我们取消了这个限制.
(2) 由本题还可以得到如下推论: 如果 \(A_1,A_2\) 都可以对角化, 并且 \(A_1,A_2\) 没有公共的特征值, 那么矩阵 \(A\) 也可以对角化. 这个推论是复旦高代教材第 249 页复习题 7 的推广.
(3) 在本题中, \(A_1,A_2\) 没有公共的特征值是最本质的条件. 有了这个条件, 不管 \(B\) 是怎样的矩阵, 都对 \(A\) 的 Jordan 标准型不产生任何影响; 但如果没有这个条件, 一般情况下结论并不成立. 比如我们看如下例子: 设 \(A_1=A_2=(1)\), \(B=(1)\), 则 \(A\) 的 Jordan 标准型不是 \(I_2\), 而是 \(J_2(1)\).
[问题2014S08] 复旦高等代数II(13级)每周一题(第八教学周)的更多相关文章
- [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
- [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)
问题2014S02 设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...
- [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)
[问题2015S01] 设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...
- [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)
[问题2015S08] 设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...
- [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)
[问题2014A07] 设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)
[问题2014S06] 试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间, \(\varphi\) 为 \(V\) 上的线 ...
- [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)
[问题2014S03] 设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...
随机推荐
- 类 class
<?php class Person{ //定义一个类 public $name; //定义属性 public $age; function say(){ //定义办法 echo "m ...
- 使用DB4o做一个.Net版的website(一)环境
一个机缘巧合之下,知道了DB4o这个数据库引擎,下载查看之后,被其方便.高效.以及便捷的管理方式锁折服. 故决定使用其做一个.NET版本的web站点,来巩固学到的知识,以及为后来人做一点点贡献. 首先 ...
- go gomail
package main //cmd: go get gopkg.in/gomail.v1 import ( "gopkg.in/gomail.v1" ) func main() ...
- request.querystring和request.form、session的区别
1. request.querystring是用来接收地址里面问号“?”后面的参数的内容, 用get方法读取的 不安全 request.form是用来接收表单递交来的数据 ,是用post方法读取 ...
- C 数组模拟阶乘运算
#include <stdio.h> void rdump(int arr[],int len) { ; ;i >= ; --i) { printf("%d",a ...
- HttpURLConnection请求
方法调用: //测试 public static void main(String[] args) { Map map = new HashMap(); map.put("type" ...
- eNSP的使用
1- 进入华为路由器界面配置ipThe device is running!####################################Nov 1 2016 23:39:24-08:00 ...
- [HTML5]移动开发不同手机弹出数字键盘问题
这里还是先那么先交代一下遇到的问题.其实无论是tel还是number都不是完美的:type="tel"优点是iOS和Android的键盘表现都差不多缺点是那些字母好多余,虽然我没有 ...
- Java:并行编程及同步使用方法
知道java可以使用java.util.concurrent包下的 CountDownLatch ExecutorService Future Callable 实现并行编程,并在并行线程同步时,用起 ...
- AJax 跨域问题
从AJAX诞生那天起,XMLHttprequest对象不能跨域请求的问题就一直存在.这似乎是一个很经典的问题了.是由于javascript的同源策略(这里不作深入探讨)所导致. 解决的办法,大概有如下 ...