吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_classification():
'''
加载用于分类问题的数据集
'''
# 使用 scikit-learn 自带的 digits 数据集
digits=datasets.load_digits()
# 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) #集成学习随机森林RandomForestClassifier分类模型
def test_RandomForestClassifier(*data):
X_train,X_test,y_train,y_test=data
clf=ensemble.RandomForestClassifier()
clf.fit(X_train,y_train)
print("Traing Score:%f"%clf.score(X_train,y_train))
print("Testing Score:%f"%clf.score(X_test,y_test)) # 获取分类数据
X_train,X_test,y_train,y_test=load_data_classification()
# 调用 test_RandomForestClassifier
test_RandomForestClassifier(X_train,X_test,y_train,y_test)

def test_RandomForestClassifier_num(*data):
'''
测试 RandomForestClassifier 的预测性能随 n_estimators 参数的影响
'''
X_train,X_test,y_train,y_test=data
nums=np.arange(1,100,step=2)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for num in nums:
clf=ensemble.RandomForestClassifier(n_estimators=num)
clf.fit(X_train,y_train)
training_scores.append(clf.score(X_train,y_train))
testing_scores.append(clf.score(X_test,y_test))
ax.plot(nums,training_scores,label="Training Score")
ax.plot(nums,testing_scores,label="Testing Score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestClassifier")
plt.show() # 调用 test_RandomForestClassifier_num
test_RandomForestClassifier_num(X_train,X_test,y_train,y_test)

def test_RandomForestClassifier_max_depth(*data):
'''
测试 RandomForestClassifier 的预测性能随 max_depth 参数的影响
'''
X_train,X_test,y_train,y_test=data
maxdepths=range(1,20)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for max_depth in maxdepths:
clf=ensemble.RandomForestClassifier(max_depth=max_depth)
clf.fit(X_train,y_train)
training_scores.append(clf.score(X_train,y_train))
testing_scores.append(clf.score(X_test,y_test))
ax.plot(maxdepths,training_scores,label="Training Score")
ax.plot(maxdepths,testing_scores,label="Testing Score")
ax.set_xlabel("max_depth")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestClassifier")
plt.show() # 调用 test_RandomForestClassifier_max_depth
test_RandomForestClassifier_max_depth(X_train,X_test,y_train,y_test)

def test_RandomForestClassifier_max_features(*data):
'''
测试 RandomForestClassifier 的预测性能随 max_features 参数的影响
'''
X_train,X_test,y_train,y_test=data
max_features=np.linspace(0.01,1.0)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for max_feature in max_features:
clf=ensemble.RandomForestClassifier(max_features=max_feature)
clf.fit(X_train,y_train)
training_scores.append(clf.score(X_train,y_train))
testing_scores.append(clf.score(X_test,y_test))
ax.plot(max_features,training_scores,label="Training Score")
ax.plot(max_features,testing_scores,label="Testing Score")
ax.set_xlabel("max_feature")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestClassifier")
plt.show() # 调用 test_RandomForestClassifier_max_features
test_RandomForestClassifier_max_features(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型的更多相关文章
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 机器学习:集成学习:随机森林.GBDT
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...
- 吴裕雄 python 机器学习——伯努利贝叶斯BernoulliNB模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型
from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_Va ...
- 吴裕雄 python 机器学习——数据预处理字典学习模型
from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_Diction ...
随机推荐
- vue加载单文件使用vue-loader报错
报错信息如下:ERROR in ./src/login.vue Module Error (from ./node_modules/vue-loader/lib/index.js): vue-load ...
- LaTeX技巧003:实现一个章标题
代码如下: \documentclass[11pt]{book} \usepackage{graphicx} \usepackage{CJKfntef} \usepackage{color} \mak ...
- @HystrixCommand 不能被导包
添加pom文件 <dependency> <groupId>com.netflix.hystrix</groupId> <artifactId>hy ...
- C#关于文件的创建
若使用文件夹Directory类判断了文件夹的存在,后面的文件就不需要使用File类来判断文件的存在与否和创建,只需要在前面判断过得文件夹路径后面加上文件的名字即可,它会自动判断文件是否存在,若不存在 ...
- Javascript 利用 switch 语句进行范围判断
; switch (true) { ): alert("less than five"); break; ): alert("between 5 and 8") ...
- js中的闭包理解
闭包是一个比较抽象的概念,尤其是对js新手来说.书上的解释实在是比较晦涩,对我来说也是一样. 但是他也是js能力提升中无法绕过的一环,几乎每次面试必问的问题,因为在回答的时候.你的答案的深度,对术语的 ...
- promise是怎么来的?
一.promise是如何产生的 1. promise并不是一个新的功能,它是一个类,它只是对 异步编程的代码进行整合,它是解决异步(层层嵌套的这种关系),让你的代码看起来更简洁. 2. 在 es6 中 ...
- [Java IO]05_JSON操作
目录 6.1 JSON 知识背景 6.1.1 JSON 简介 6.1.2 JSON 语法 6.1.3 JSON 的数据结构6.2 Java 中操作 JSON 数据 6.2.1 Jar包下载 ...
- pom.xml文件中dependency标签的scope子标签
1.最近整合了公司的一个项目A,而A又依赖项目B,项目B中pom.xml中有一个依赖的<scope>provided</scope>,查了一下,原来provided属性,jar ...
- 理解Login函数
_LoginPartial.cshtml文件 其中 <li>@Html.ActionLink("Log in", "Login", "Ac ...