bzoj 1046: [HAOI2007]上升序列
Description
对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax
2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给
出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先
x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.
Input
第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M
行每行一个数L,表示要询问长度为L的上升序列。N<=10000,M<=1000
Output
对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.
Sample Input
3 4 1 2 3 6
3
6
4
5
Sample Output
1 2 3 6
Impossible
题解:
古老的省选题...数据范围太小,可以乱来.
因为要求编号的字典序越小,那么显然应该从前往后能选就选
那么我们就反着做不上升子序列,最后每组询问O(n)扫一遍即可
复杂度O(n*m)
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int N=,inf=2e8;
int a[N],f[N],dis[N],n;
int midit(int x){
int l=,r=n,mid,ret;
while(l<=r){
mid=(l+r)>>;
if(x<f[mid])ret=mid,l=mid+;
else r=mid-;
}
return ret;
}
void work()
{
int tmp,ans=;
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
f[]=inf;
for(int i=n;i>=;i--){
tmp=midit(a[i])+;
if(a[i]>f[tmp])f[tmp]=a[i];
dis[i]=tmp;
if(tmp>ans)ans=tmp;
}
int m,x;
scanf("%d",&m);
while(m--){
scanf("%d",&x);
if(x>ans){
printf("Impossible\n");
continue;
}
int last=;
for(int i=;i<=n;i++){
if(dis[i]>=x && a[i]>a[last]){
last=i;
printf("%d",a[i]);
x--;
if(x)putchar(' ');
else {
puts("");
break;
}
}
}
}
} int main()
{
work();
return ;
}
bzoj 1046: [HAOI2007]上升序列的更多相关文章
- BZOJ 1046: [HAOI2007]上升序列 LIS -dp
1046: [HAOI2007]上升序列 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3438 Solved: 1171[Submit][Stat ...
- Bzoj 1046: [HAOI2007]上升序列 二分,递推
1046: [HAOI2007]上升序列 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3671 Solved: 1255[Submit][Stat ...
- BZOJ 1046: [HAOI2007]上升序列(LIS)
题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小. ----------------------------------- ...
- bzoj 1046 : [HAOI2007]上升序列 dp
题目链接 1046: [HAOI2007]上升序列 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3620 Solved: 1236[Submit] ...
- BZOJ 1046: [HAOI2007]上升序列【贪心+二分状态+dp+递归】
1046: [HAOI2007]上升序列 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4987 Solved: 1732[Submit][Stat ...
- [BZOJ 1046] [HAOI2007] 上升序列 【DP】
题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最 ...
- bzoj 1046: [HAOI2007]上升序列【dp+二分】
先从后到前做一个最长下降子序列的dp,记录f[i],我这里用的是二分(其实树状数组比较显然) 然后对于询问,超出最长上升子序列的直接输出:否则从前到后扫,f[i]>=x&&a[i ...
- BZOJ 1046 [HAOI2007]上升序列(LIS + 贪心)
题意: m次询问,问下标最小字典序的长度为x的LIS是什么 n<=10000, m<=1000 思路: 先nlogn求出f[i]为以a[i]开头的LIS长度 然后贪心即可,复杂度nm 我们 ...
- 【BZOJ 1046】 1046: [HAOI2007]上升序列
1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < ...
随机推荐
- velocity学习总结
什么是velocity velocity是一个基于Java的模板引擎,它可以实现彻底的前后端,前端不允许像jsp那样出现Java代码,而是利用context容器传递变量,在java代码里面我们可以往容 ...
- LightningChart最新版 v.8.3 全新发布,新功能使用教程。
LightningChart最新版v.8.3全新发布,主要介绍以下五个新功能及使用教程. 1. 网格模型,三角鼠标追踪 Tracing MeshModels with mouse. Traced ...
- python全栈开发-logging模块(日记专用)
一.概述 很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误.警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,l ...
- [phpvia/via] PHP多进程服务器模型中的惊群
[ 概述 ] 典型的多进程服务器模型是这样的,主进程绑定ip,监听port,fork几个子进程,子进程安装信号处理器,随后轮询资源描述符检查是否可读可写: 子进程的轮询又涉及到 IO复用,accept ...
- WPF 自定义Calendar样式(日历样式,周六周日红色显示)
一.WPF日历控件基本样式 通过Blend获取到Calendar需要设置的三个样式CalendarStyle.CalendarButtonStyle.CalendarDayButtonStyle.Ca ...
- Django之中间件
中间件简介 什么是中间件 中间件是一个用来处理Django的请求和响应的框架级别的钩子.它是一个轻量.低级别的插件系统,用于在全局范围内改变Django的输入和输出.每个中间件组件都负责做一些特定的功 ...
- 云+社区技术沙龙:Kafka meetup 深圳站报名开启
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 如果说 2018 年是技术大爆炸年,那么 Apache Kafka 绝对是其中闪亮的新星. 自Kafka 从首发之日起,已经走过了快八个年头 ...
- jsp和servlet的区别和联系
jsp和servlet的区别和联系:1.jsp经编译后就变成了Servlet.(JSP的本质就是Servlet,JVM只能识别java的类,不能识别JSP的代码,Web容器将JSP的代码编译成JVM能 ...
- pthon/零起点(一、集合)
pthon/零起点(一.集合) set( )集合,集合是无序的,集合是可变的,集合是可迭代的 set()强型转成集合数据类型 set()集合本身就是去掉重复的元素 集合更新操作案列: j={1,2,3 ...
- MySQL基础操/下
MySQL基础操 一.自增补充 desc (表名)t1: 查看表格信息内容 表的信息 show create table t1(表名):也是查看信息,还不多是横向查看 show create tabl ...