POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830
如果开关s1操作一次,则会有s1(记住自己也会变)、和s1连接的开关都会做一次操作。
那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次。
所以有n个开关,就有n条方程,
每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n]
那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2相等。就是操作次数的奇偶性要相等。
那么来一个高斯消元,就知道是否有可能有解。
在有解的情况下,可能存在自由变量,什么意思呢?
就是假设有k个自由变量,那么就是前n - k个变量有固定的操作,使得能变成最终结果,那么这k个自由变量就可以任取值了,一共有2^k种不同的取值方案。因为方案不要求有顺序,所以那个灯取那个状态,都是相同的一种解。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <bitset>
const int maxn = 1e2 + ;
class GaussMatrix { //复杂度O(n3)
public:
int a[maxn][maxn];
int equ, val; //方程(行)个数,和变量(列)个数,其中第val个是b值,不能取
void init() {
for (int i = ; i <= equ; ++i) {
for (int j = ; j <= val; ++j) {
a[i][j] = ;
}
}
}
void swapRow(int rowOne, int rowTwo) {
for (int i = ; i <= val; ++i) {
swap(a[rowOne][i], a[rowTwo][i]);
}
}
void swapCol(int colOne, int colTwo) {
for (int i = ; i <= equ; ++i) {
swap(a[i][colOne], a[i][colTwo]);
}
}
// bool same(double x, double y) {
// return fabs(x - y) < eps;
// }
int guass() {
int k, col; // col,当前要处理的列, k当前处理的行
for (k = , col = ; k <= equ && col < val; ++k, ++col) { //col不能取到第val个
int maxRow = k; //选出列最大值所在的行,这样使得误差最小。(没懂)
for (int i = k + ; i <= equ; ++i) {
if (abs(a[i][col]) > abs(a[maxRow][col])) {
maxRow = i;
}
}
if (a[maxRow][col] == ) { //如果在第k行以后,整一列都是0
--k; //则这个变量就是一个自由变量。
continue;
}
if (maxRow != k) swapRow(k, maxRow); // k是当前的最大行了
for (int i = col + ; i <= val; ++i) { //整一列约去系数
a[k][i] /= a[k][col];
}
a[k][col] = ; //第一个就要变成1了,然后它下面和上面的变成0
for (int i = ; i <= equ; ++i) {
if (i == k) continue; //当前这行,不操作
for (int j = col + ; j <= val; ++j) {
a[i][j] = (a[i][j] - a[i][col] * a[k][j] + ) % ;
}
a[i][col] = ;
}
// debug();
}
for (int res = k; res <= equ; ++res) {
if (a[res][val] != ) return -; //方程无解
}
return val - k; //自由变量个数
}
void debug() {
for (int i = ; i <= equ; ++i) {
for (int j = ; j <= val; ++j) {
cout << a[i][j] << " ";
}
printf("\n");
}
printf("*******************************************\n\n");
}
}arr;
int be[maxn], en[maxn];
void work() {
int n;
cin >> n;
for (int i = ; i <= n; ++i) cin >> be[i];
for (int i = ; i <= n; ++i) cin >> en[i];
arr.init();
// memset(&arr, 0, sizeof arr);
arr.equ = n, arr.val = n + ;
do {
int x, y;
cin >> x >> y;
if (x == && y == ) break;
arr.a[x][x] = ;
arr.a[y][x] = ;
} while (true);
for (int i = ; i <= n; ++i) {
arr.a[i][n + ] = (en[i] - be[i] + ) % ;
arr.a[i][i] = ; //这个是必须的。
}
// arr.debug();
int res = arr.guass();
if (res == -) {
cout << "Oh,it's impossible~!!" << endl;
} else cout << ( << res) << endl;
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
int t;
cin >> t;
while (t--) work();
return ;
}
POJ 1830 开关问题 高斯消元,自由变量个数的更多相关文章
- POJ 1830 开关问题 (高斯消元)
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...
- POJ 1830 开关问题 [高斯消元XOR]
和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...
- POJ.1830.开关问题(高斯消元 异或方程组)
题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...
- POJ 3185 The Water Bowls 【一维开关问题 高斯消元】
任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ - 1681: Painter's Problem (开关问题-高斯消元)
pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...
- POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)
pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...
- A - The Water Bowls POJ - 3185 (bfs||高斯消元)
题目链接:https://vjudge.net/contest/276374#problem/A 题目大意:给你20个杯子,每一次操作,假设当前是对第i个位置进行操作,那么第i个位置,第i+1个位置, ...
- POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)
依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...
- POJ 2065 SETI(高斯消元)
题目链接:http://poj.org/problem?id=2065 题意:给出一个字符串S[1,n],字母a-z代表1到26,*代表0.我们用数组C[i]表示S[i]经过该变换得到的数字.给出一个 ...
随机推荐
- linux应用之vi编辑器的安装、配置及用法
vi(vim是其高级版本)是linux系统上用于文本编辑的一个应用.它的功能十分强大,在日常的系统管理活动或编程中用得都很多.所以用好vi是很有必要的. 学习vi主要学的知识点有:1.vi的配置.2. ...
- DDD领域驱动之干货(二)
基于仓储的实现 1.前言:本着第一节写的有些糊涂,主要是自己喜欢实干,不太喜欢用文字表述,就这样吧.下面切入正题. 博客园里面有很多的大佬,我这里就不一一解释概览,有兴趣的朋友可以去看大佬们写的 ...
- bzoj 2194 快速傅立叶之二 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...
- 关于layer.open() 弹框的使用
在用 layer.open() 追加渲染HTML的时候,完全看不到效果,皆因layui框架需要在最后用 form.render() 方法来渲染表单才可以看到效果,写法如下: <script> ...
- Flutter实战视频-移动电商-41.详细页_数据接口的调试
41.详细页_数据接口的调试 建立数据模型层,我们的业务逻辑分开,然后进行后台数据的调试 生成model类 json数据: { ", "message": "s ...
- SPOJ CIRU The area of the union of circles (计算几何)
题意:求 m 个圆的并的面积. 析:就是一个板子题,还有要注意圆的半径为0的情况. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024 ...
- 2 手写Java LinkedList核心源码
上一章我们手写了ArrayList的核心源码,ArrayList底层是用了一个数组来保存数据,数组保存数据的优点就是查找效率高,但是删除效率特别低,最坏的情况下需要移动所有的元素.在查找需求比较重要的 ...
- C#中var关键字用法分析
原文连接 本文实例分析了C#中var关键字用法.分享给大家供大家参考.具体方法如下: C#关键字是伴随着.NET 3.5以后,伴随着匿名函数.LINQ而来, 由编译器帮我们推断具体的类型.总体来说,当 ...
- MFC CMap整理
映射表类(CMap)是MFC集合类中的一个模板类,也称作为“字典”.CMap是把唯一关键码映射到值的字典收集类,使用CMap可以构造一个关键字和元素值映射的集合类.一旦在映射中插入了一个关键码值对(元 ...
- springMVC常用传参总结
本文介绍了springMVC常用的传参方式和一些注意的事项,页面表单主要以ajax的形式提交. 本帅是个菜鸡,水平有限,若有什么讲得不对或有补充的地方欢迎各位提意见. 一.传递String类型 1 ...