在Unity中实现屏幕空间反射Screen Space Reflection(4)
第四部分讲一下如何在2D屏幕空间步进光线。
http://casual-effects.blogspot.com/2014/08/screen-space-ray-tracing.html 中的代码感觉不太好理解,这里的代码是按照我自己的理解去重新实现的简单版,在效率上可能不如这个网址中的代码。
3D空间的光线步进
原本的实现中,我们得到光线后,将其在3D空间中进行步进,再投影到2D空间上。在投影过后,3D空间中均匀的采样点在2D空间中就不是均匀分布的了。

(图来自 http://casual-effects.blogspot.com/2014/08/screen-space-ray-tracing.html)
这种不均匀导致了采样效率的低下。特别是光线的z方向的步进较大时,这种不均匀采样更为严重。此时有大量的采样被消耗在同一个像素上,或者一大片区域只有少数几个采样,这种情形是很多见的。
为了改进这个情况,我们将算法改进为在2D的屏幕上,按照像素步进光线。
相比于原来的在3D空间中步进光线,再将光线投影回2D屏幕,采样对应点的深度,做相交检测;在2D空间中步进光线,我们可以免去投影回2D屏幕这一步骤,但是我们也无法知道2D屏幕上的点的深度是多少了。
解决办法很简单,我们用2D空间中的光线起点和终点(这两个点的z值是知道的)做插值,得到中间的点的z值即可。
另外需要注意的是,为了获取透视校正的插值,我们需要做的是用1/z做线性插值,而不是直接对z做插值,如果对光栅化有了解的话应该可以理解这一段。
首先我们将起点和终点投影到屏幕空间里。
float4 H0 = mul(unity_CameraProjection, float4(start, 1)); //H0.xy / H0.w is in [-1,1]
float4 H1 = mul(unity_CameraProjection, float4(end, 1));
float2 screenP0 = H0.xy / H0.w;
float2 screenP1 = H1.xy / H1.w; //。屏幕空间的采样坐标。
接着我们算出两个点在屏幕上的距离,以及对应的采样步长。
float4 texelSize = _MainTex_TexelSize;
if (abs(dot(screenP1 - screenP0, screenP1 - screenP0)) < 1.0) {
screenP1 += texelSize.xy;
}
float2 deltaPixels = (screenP1 - screenP0) * texelSize.zw; //屏幕上两点的像素间隔。
float step; //线性插值的步长。
step = min( 1 / abs(deltaPixels.y), 1 / abs(deltaPixels.x)); // 使每次采样都会恰好间隔一个像素
这里的step是采样的步长。当step == 1时,一步就从start采样到end了。
step = min( 1 / abs(deltaPixels.y), 1 / abs(deltaPixels.x)); 使得每次步进都会在较长的轴上步进一个像素的距离
step *= PIXEL_STRIDE; //加大采样距离(加快插值进度)。
float sampleScaler = 1.0 - min(1.0, -start.z / 100);
step *= 1.0 + sampleScaler; //距离较近时(不容易采偏),插值进度更快
PIXEL_STRIDE是一个大于1的数,用于加大采样像素的间隔。
接着我们加入一个samplerScale。当一个像素实际距离镜头较远时,我们需要相对较小的采样步长(因为远处物体的像素要更少,需要更精确的采样),对于近处的物体我们可以用相对宽松的步长。
下面是采样的部分。
float interpolationCounter = step; //记录当前插值的进度。采样进度计数,大于等于1时采样就会结束。初始值为step可以避免一些奇怪的情况。
float oneOverzCurrent = 1 / start.z; //当前采样点的1/z,
float2 screenPCurrent = screenP0; //是当前采样点的屏幕坐标。
float dOneOverZCurrent = step * (1 / end.z - 1 / start.z); //1/z的每两个采样的差值
float2 dScreenPCurrent = step * (screenP1 - screenP0); //同上
oneOverzCurrent += jitter * dOneOverZCurrent;
screenPCurrent += jitter * dScreenPCurrent;
float intersect = 0;
float prevDepth = 1 / (oneOverzCurrent + 0.1 * dOneOverZCurrent) / -_ProjectionParams.z; //上一个采样的z值,用于线段求交;+ 0.1 * dOneOverZCurrent可以防止因为精度问题导致光线在起点自交的问题。
#if 1
UNITY_LOOP
for (int i = 1; i <= STEP_COUNT && interpolationCounter <= 1; i++) {
oneOverzCurrent += dOneOverZCurrent;
screenPCurrent += dScreenPCurrent;
interpolationCounter += step;
float screenPTrueDepth = 1 / oneOverzCurrent/ -_ProjectionParams.z; //求出当前光线终点实际的z值
if (RayIntersect(screenPTrueDepth,prevDepth, screenPCurrent)){ //求交
#if 1 //binary search
...
#endif
hitPixel = (screenPCurrent) / 2 + 0.5;
intersect = 1;
alpha *= 1 - (float)i / STEP_COUNT;
break;
}
prevDepth = screenPTrueDepth;
}
jitter是抖动值,可以优化最终效果。可以通过
float2 uv2 = i.uv * _MainTex_TexelSize.zw;
float c = (uv2.x + uv2.y) * 0.25;
float jitter = fmod(c,1.0);
计算得到。
其他的
到这里,实现SSR的核心方法应该就差不多了。剩下的就是一些通用的优化方法了,比如降采样、加模糊等等,就不再说了。
需要一提的是,这里的屏幕空间光线追踪,其实是一个很通用的算法,可以基于它实现其他的更多的需要光线追踪的效果。
另外,当场景中有必须用forward rendering渲染的物体存在时,会出现一些bug。具体原因是unity的绘制顺序是Deferred -> Foward -> Image Effect,我们在Image Effect绘制SSR时,此时屏幕上已经有Forward物体被绘制了,这时候根据GBuffer算出来的(虽然depth
buffer是正确的)反射颜色就会直接叠加到Forward物体上。
这个bug可以通过改用command buffer解决。官方的实现中,SSR效果处于Deferred rendering结束之后进行(AfterFinalPass),即Deferred -> SSR -> Forward。此时就不会出现奇怪的问题了。但是这样也导致了Forward Object无法被反射(因为计算反射的时候Forward物体还没被绘制)。
下一篇文章会讲一下,用这种光线追踪方法实现屏幕空间阴影。这种阴影作为一个后处理效果,效率极高,而且可以直接和Unity内置的Screen space shadow mask结合使用。
在Unity中实现屏幕空间反射Screen Space Reflection(4)的更多相关文章
- 在Unity中实现屏幕空间反射Screen Space Reflection(1)
本篇文章我会介绍一下我自己在Unity中实现的SSR效果 出发点是理解SSR效果的原理,因此最终效果不是非常完美的(代码都是够用就行),但是从学习的角度来说足以学习到SSR中的核心算法. 如果对核心算 ...
- 在Unity中实现屏幕空间反射Screen Space Reflection(2)
traceRay函数 在上一篇中,我们有如下签名的traceRay函数 bool traceRay(float3 start, float3 direction, out float2 hitPixe ...
- 在Unity中实现屏幕空间反射Screen Space Reflection(3)
本篇讲一下相交检测的优化.有两个措施. 线段相交检测 之前的检测都是检测光线的终点是否在物体内.我们可以尝试检测光线的线段是否与物体相交. 比如说有一个非常薄的物体,光线差不多垂直于它的表面.如果用普 ...
- 高级屏幕空间反射: Screen Space Reflection (SSSR)
SSSR进一步调优,对标寒霜级技术水平,实现方式为Direct3D 11+自主实现实时渲染引擎,方法为对比测试.实现已经有段时间了,还是简要更新下吧.以下画面中的SSSR效果全部采用1:4 resol ...
- 高级屏幕空间反射: Screen Space Reflection (SSR)
自从CE3首倡SSR以来,发展至今,其质量与当年早已不能同日而语.不仅强调超越性的质量,而且强调超越性的性能.乘着周末有空撸了撸,以下是增强型实时SSR结果图.与我原来的SSR原始实现相比,新的增强型 ...
- screen space reflection/soft alpha test/
http://www.crytek.com/cryengine/presentations/secrets-of-cryengine-3-graphics-technology 很多宝贝里面 不止题目 ...
- 在Unity中实现屏幕空间阴影(1)
接着上篇文章,我们实现了SSR效果. 其中的在屏幕空间进行光线追踪的方法是通用的.借此我们再实现一种屏幕空间的效果,即屏幕空间阴影. 文中的图片来自Catlike coding http://catl ...
- 在Unity中实现屏幕空间阴影(2)
参考文章: https://www.imgtec.com/blog/implementing-fast-ray-traced-soft-shadows-in-a-game-engine/ 完成的工程: ...
- 关于Unity中的屏幕适配
一.Game视图的屏幕分辨率可以先自定义添加,供以后选择,以下是手游经常用到的分辨率: 1.1136X640,iPhone5 2.1920X1080,横屏,主流游戏都是这个分辨率 3.1080X192 ...
随机推荐
- 模板CodeTemplate
/** * @author:dubbo@xxxx.com * @date: ${date} ${time} * @version: V1.0 * @review: dubbo/${date} ${ti ...
- QP(Quote-Printable) 编码
QP(Quote-Printable) 方法,通常缩写为“Q”方法,其原理是把一个 8 bit 的字符用两个16进制数值表示,然后在前面加“=”.所以我们看到经过QP编码 后的文件通常是这 ...
- 使用cookie保存用户登录信息
写入Cookie HttpCookie _cookie = new HttpCookie("User"); _cookie.Values.Add("UserName&qu ...
- 【Django】Django—Form两种解决表单数据无法动态刷新的方法
一.无法动态更新数据的实例 1. 如下,数据库中创建了班级表和教师表,两张表的对应关系为“多对多” from django.db import models class Classes(models. ...
- iOS----MRC(手动内存管理)
1.MRC是什么,有什么用? 在苹果开发中,我们是没有垃圾回收机制的.所以在ARC推出之前,我们苹果开发程序员需要通过手动代码的形式尽量严密的管理我们的App的内存: ---------------- ...
- 多realm以及jdbcRealm配置
多realm配置 public class MyRealm1 implements Realm { public String getName() { return "myrealm1&qu ...
- [洛谷P4626]一道水题 II
题目大意:求$lcm(1,2,3,\cdots,n)\pmod{100000007}$,$n\leqslant10^8$ 题解:先线性筛出质数,然后求每个质数最多出现的次数,可以用$\log_in$来 ...
- 常州day1p5
给一个 n∗m 的矩阵,矩阵的每个格子上有一个不超过 30 的非负整数. 我们定义一条合法的路线是从(1,1)开始只能向右和向下移动到达(n,m)的路线. 定义数列 A1,A2,A3,..,An+m− ...
- spark(一)
一.spark 学习 1. spark学习的三种地方: (1)Spark.apache.org 官方文档 (2)spark的源代码的官方网站 https://github.com/apache/ ...
- bzoj3036: 绿豆蛙的归宿(期望DP)
刷水反被水题日,拓扑写炸WA了2发T T... 因为是DAG图,可以直接递推,不需要高斯消元 #include<iostream> #include<cstring> #inc ...