st表 LCA
我当时知道ST表可以 \(O(1)\) 求 LCA 的时候是极为震惊的,可以在需要反复使用 LCA 的时候卡常使用。
ST表!用于解决 RMQ问题
怎么实现?
考虑把求 LCA 转换为 RMQ问题。我们对于树求一遍欧拉序,就是那个回溯也会记录的那个。我们处理出每个数第一次在欧拉序中出现的位置,欧拉序上每个位置的深度,以及欧拉序上每个位置出现的点的编号。这些信息都可以在一次 \(dfs\) 中求出。然后不难发现在回溯过程中加入的点是之前遍历的点的祖先,由此也不难推出结论。
在两个点在欧拉序上第一次出现的位置的区间中间的深度最小的点就是这两个点的 LCA
那么直接变成 RMQ问题,上 ST表。
Code:
void dfs(int u,int f,int deep){
dfn[u]=++idx;
app[idx]=u;
dep[idx]=deep;
for(int i=head[u];~i;i=nxt[i]){
if(to[i]==f) continue;
dfs(to[i],u,deep+1);
app[++idx]=u;
dep[idx]=deep;
}
}
inline void init_ST(){
for(int i=1;i<=(n<<1);++i){
st[i][0]=i;
}
lg2[1]=0;lg2[2]=1;
for(int i=3;i<=(n<<1);++i){
lg2[i]=lg2[i>>1]+1;
}
for(int j=1;(1<<j)<=(n<<1);++j){
for(int i=1;i+(1<<j)-1<=(n<<1);++i){
int a=st[i][j-1],b=st[i+(1<<(j-1))][j-1];
if(dep[a]<dep[b]) st[i][j]=a;
else st[i][j]=b;
}
}
}
inline int LCA(int a,int b){
int l=dfn[a],r=dfn[b];
if(l>r) Swap(l,r);
int k=lg2[r-l+1];
int x=st[l][k],y=st[r-(1<<k)+1][k];
return dep[x]<dep[y]?app[x]:app[y];
}
st表 LCA的更多相关文章
- 51Nod1766 树上的最远点对 ST表 LCA 线段树
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1766.html 题目传送门 - 51Nod1766 题意 n个点被n-1条边连接成了一颗树,给出a~ ...
- LCA 算法(一)ST表
介绍一种解决最近公共祖先的在线算法,st表,它是建立在线性中的rmq问题之上. 代码: //LCA: DFS+ST(RMQ) #include<cstdio> #include&l ...
- 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径
51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...
- [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)
[51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...
- HDU 2586(LCA欧拉序和st表)
什么是欧拉序,可以去这个大佬的博客(https://www.cnblogs.com/stxy-ferryman/p/7741970.html)巨详细 因为欧拉序中的两点之间,就是两点遍历的过程,所以只 ...
- lca最近公共祖先(st表/倍增)
大体思路 1.求出每个元素在树中的深度 2.用st表预处理的方法处理出f[i][j],f[i][j]表示元素i上方第2^j行对应的祖先是谁 3.将较深的点向上挪,直到两结点的深度相同 4.深度相同后, ...
- 【BZOJ-4569】萌萌哒 ST表 + 并查集
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 459 Solved: 209[Submit][Status] ...
- 【模板】ST表
给定一个长度为 \(N\) 的数列,和 \(M\) 次询问,求出每一次询问的区间\([l,r]\)内数字的最大值. 说明 对于30%的数据,满足: \(1 \leq N, M \leq 10 , 1≤ ...
- hdu6107 倍增法st表
发现lca的倍增解法和st表差不多..原理都是一样的 /* 整篇文章分成两部分,中间没有图片的部分,中间有图片的部分 分别用ST表求f1,f2表示以第i个单词开始,连续1<<j行能写多少单 ...
随机推荐
- ubantu系统之 虚拟机不识别usb接口
1. 下载和 virtualbox 同一版本的 Orcale VM VirtualBox Extension Pack 并在ubantu上安装:2. 启动虚拟机,选中菜单栏中"设置" ...
- java中的排序除了冒泡以来, 再给出一种方法, 举例说明
9.5 排序: 有一种排序的方法,非常好理解,详见本题的步骤,先找出最大值和最小值,把最小值打印出来后,把它存在另一个数组b当中,再删除此最小值,之后再来一次找出最小值,打印出最小值以后,再把它存 ...
- JAVA对XML文件的读写
XML 指可扩展标记语言(EXtensible Markup Language),是独立于软件和硬件的信息传输工具,应用于 web 开发的许多方面,常用于简化数据的存储和共享. xml指令处理指令,简 ...
- response.setHeader("Cache-Control","no-cache");的作用
1. response.setHeader("Cache-Control","no-cache"); This is used to prevent the ...
- JavaScript实现科学计算器
运行效果: 可实现科学计算器的功能,如:PI,sin,cos,tan等 源代码: 1 <!DOCTYPE html> 2 <html lang="zh"> ...
- 面试官:Zookeeper怎么解决读写、双写并发不一致问题,以及共享锁的实现原理?
哈喽!大家好,我是小奇,一位不靠谱的程序员 小奇打算以轻松幽默的对话方式来分享一些技术,如果你觉得通过小奇的文章学到了东西,那就给小奇一个赞吧 文章持续更新 一.前言 今天清明假期,赶上北京玉渊潭公园 ...
- cali1e4a9cee8dc这是什么东西?
//我们查下k8s node节点,发现很多类似 cali7c620a7a67b 这样的类似网络设备的东西.//这些是什么呢?//k8s集群节点ht10,node网络情况.[root@ht10 cali ...
- 前端javascript之BOM、DOM操作、事件
BOM与DOM操作 BOM 浏览器对象模型>>>:使用js操作浏览器 DOM 文档对象模型>>>:使用js操作前端页面 window对象 所有浏览器都支持 wind ...
- linux压缩及解压命令
.zip文件:压缩:zip,解压:unzip 如果要解压到指定目录,可以加上 -d 选项 .gz文件:压缩:gzip,解压:gunzip 压缩.解压缩后原文件丢失,可以加上 -c 选项利用 linux ...
- Grafana中文汉化
可视化图表 Grafana是一个通用的可视化工具.通过Grafana可以管理用户权限,数据分析,查看,导出,设置告警等. 仪表盘Dashboard 通过数据源定义好可视化的数据来源之后,对于用户而言最 ...