Blurs an image using the median filter.

C++: void medianBlur(InputArray src, OutputArray dst, int ksize)

highlight=smooth#void medianBlur(InputArray src, OutputArray dst, int ksize)" title="Permalink to this definition" style="color: rgb(101, 161, 54); text-decoration: none; visibility: hidden; font-size: 0.8em; padding: 0px 4px;">

Python: cv2.medianBlur(src, ksize[, dst]) → dst

highlight=smooth#cv2.medianBlur" title="Permalink to this definition" style="color: rgb(101, 161, 54); text-decoration: none; visibility: hidden; font-size: 0.8em; padding: 0px 4px;">

Parameters:
  • src – input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be CV_8UCV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
  • dst – destination array of the same size and type as src.
  • ksize – aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...

The function smoothes an image using the median filter with the aperture. Each channel of a multi-channel image is processed independently. In-place operation is supported.

中值滤波将图像的每一个像素用邻域 (以当前像素为中心的正方形区域)像素的 中值 取代 。

与邻域平均法相似,但计算的是中值

本博客全部内容是原创,假设转载请注明来源

http://blog.csdn.net/myhaspl/

#用中值法
for y in xrange(1,myh-1):
for x in xrange(1,myw-1):
lbimg[y,x]=np.median(tmpimg[y-1:y+2,x-1:x+2]

以下是调用opencv 的函数 

# -*- coding: utf-8 -*-
#code:myhaspl@myhaspl.com
#中值滤波
import cv2
import numpy as np
fn="test3.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) #加上椒盐噪声
#灰阶范围
w=img.shape[1]
h=img.shape[0]
newimg=np.array(img)
#噪声点数量
noisecount=50000
for k in xrange(0,noisecount):
xi=int(np.random.uniform(0,newimg.shape[1]))
xj=int(np.random.uniform(0,newimg.shape[0]))
newimg[xj,xi]=255 #滤波去噪
lbimg=cv2.medianBlur(newimg,3)
cv2.imshow('src',newimg)
cv2.imshow('dst',lbimg)
cv2.waitKey()
cv2.destroyAllWindows()

中值滤波忽略了较高阶灰度和较低阶灰度,直接取中值,由于有效得过滤椒盐噪声

对高斯噪声的滤波

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbXloYXNwbA==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />

数学之路-python计算实战(17)-机器视觉-滤波去噪(中值滤波)的更多相关文章

  1. 数学之路-python计算实战(15)-机器视觉-滤波去噪(归一化块滤波)

    # -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #归一化块滤波 import cv2 import numpy as np fn="tes ...

  2. 数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波

    拉普拉斯线性滤波,.边缘检測  . When ksize == 1 , the Laplacian is computed by filtering the image with the follow ...

  3. 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波

    拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...

  4. 数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)

    我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是  是图像中全部的灰度数, 是图像中全部的像素数,  实际上是图像的直方图,归一化到 . 把  作为相应于  的累计概率 ...

  5. 数学之路-python计算实战(19)-机器视觉-卷积滤波

    filter2D Convolves an image with the kernel. C++: void filter2D(InputArray src, OutputArray dst, int ...

  6. 数学之路-python计算实战(9)-机器视觉-图像插值仿射

    插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpol ...

  7. 数学之路-python计算实战(13)-机器视觉-图像增强

    指数变换的基本表达式为:y=bc(x-a)-1 当中參数b.c控制曲线的变换形状,參数a控制曲线的位置. 指数变换的作用是扩展图像的高灰度级.压缩低灰度级.能够用于亮度过高的图像 本博客全部内容是原创 ...

  8. 数学之路-python计算实战(16)-机器视觉-滤波去噪(邻域平均法滤波)

    # -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #邻域平均法滤波,半径为2 import cv2 import numpy as np fn=&qu ...

  9. 数学之路-python计算实战(18)-机器视觉-滤波去噪(双边滤波与高斯滤波 )

    高斯滤波就是对整幅图像进行加权平均的过程.每个像素点的值,都由其本身和邻域内的其它像素值经过加权平均后得到.高斯滤波的详细操作是:用一个模板(或称卷积.掩模)扫描图像中的每个像素.用模板确定的邻域内像 ...

随机推荐

  1. Ionic2/angularJs2中的静态类 PhotoLibrary 调用不上

    photoLibrary调用报错:No provider for PhotoLibrary: 在调用相册文件时有用到photolibrary,总有些莫名的报错,3月份的时候这个坑让我不知所措,现在写下 ...

  2. jboss之启动加载过程详解

    今天看了看jboss的boot.log和server.log日志,结合自己的理解和其他的资料,现对jboss的启动和加载过程做出如下总结: boot.xml是服务器的启动过程的日志,不涉及后续的操作过 ...

  3. 云服务IaaS,PaaS,SaaS

    IaaS:基础设施服务,Infrastructure-as-a-service PaaS:平台服务,Platform-as-a-service SaaS:软件服务,Software-as-a-serv ...

  4. 再谈布局之 UIStackView

    UIStackView 是 iOS9 新增的一个布局技术.熟练掌握相当节省布局时间. UIStackView 是 UIView 的子类,是用来约束子控件的一个控件.但他的作用仅限于此,他不能被渲染(即 ...

  5. Vue实战之插件 sweetalert 的使用

    安装npm install sweetalert2@7.15.1 --save 封装 sweetalertimport swal from 'sweetalert2' export default { ...

  6. uploadify的简单使用

    简单的图片上传: 1.进入官网下载uploadify插件:http://www.uploadify.com/download/ 2.导入uploadify插件提供的css样式和类库: <link ...

  7. 链表相关的leetcode重要题目

    Leetcode 92:反转链表II 解决这道题需要三个步骤: 找到需要反转的第一个节点.可以通过头节点前进m-1步,找到反转开始的位置. 将需要反转的部分进行反转.参考Leetcode 206:反转 ...

  8. Getting start with dbus in systemd (03) - sd-bus.h 使用例子 (systemd version>=221)

    sd-bus.h 例子 注意: sd-dbus 是systemd提供的lib,但是这个lib,只有在systemd>v221版本后才可以使用,centos 219版本太低,所以不能使用. 参考: ...

  9. 简单了解jdbcTemplate的queryForList是如何查询

    queryForList方法会调用query方法,同时会传入一个新的ColumnMapRowMapper对象 ArgumentPreparedStatementSetter对象只有一个Object[] ...

  10. HDU - 5952 Counting Cliques(dfs搜索)

    题目: A clique is a complete graph, in which there is an edge between every pair of the vertices. Give ...